Supplementary information for

Exploration of new second-order nonlinear optical materials in

the Cs-Hg-Br-I systems

Qi Wu^a, Yin Huang^a, Xianggao Meng^b, Cheng Zhong^{a*}, Xingguo Chen^a and Jingui Qin^{a*}

^aDepartment of Chemistry, Wuhan University, Wuhan 430072, China ^bCollege of Chemistry, Central China Normal University, Wuhan 430079, China

Captions of the figures

Figure S1. X-ray diffraction powder patterns for $Cs_2Hg_2Br_2I_4$ · H_2O : Calculated and experimental

Figure S2. X-ray diffraction powder patterns for $Cs_2Hg_3I_8$ ·H₂O: Calculated and experimental.

Figure S3. Phase-matching curve for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S4. Phase-matching curve for $Cs_2Hg_3I_8$ ·H₂O.

Figure S5. ATR-FTIR spectrum for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S6. Raman spectrum for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S7. ATR-FTIR spectrum for $Cs_2Hg_3I_8$ ·H₂O.

Figure S8. Raman spectrum for $Cs_2Hg_3I_8$ ·H₂O.

Figure S9. UV-Vis absorption spectrum for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S10. UV-Vis absorption spectrum for $Cs_2Hg_3I_8$ ·H₂O.

Figure S11. Total and partial density of states for compounds $Cs_2Hg_2Br_2I_4$ ·H₂O using the rPBE/norm-conserving pseudopotential method.

Figure S12. Total and partial density of states for compounds $Cs_2Hg_3I_8$ ·H₂O using the rPBE/norm-conserving pseudopotential method.

Figure S13. The band structure of $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S14. The band structure of $Cs_2Hg_3I_8$ ·H₂O.

Figure S15. Calculated Refractive Indices for Cs₂Hg₂Br₂I₄·H₂O.

Figure S16. Calculated Refractive Indices for Cs₂Hg₂Br₂I₄·H₂O.

Figure S1. X-ray diffraction powder patterns for Cs₂Hg₂Br₂I₄·H₂O: Calculated and experimental.

Figure S2. X-ray diffraction powder patterns for Cs₂Hg₃I₈·H₂O: Calculated and experimental

Figure S3. Phase-matching curve for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S4. Phase-matching curve for $Cs_2Hg_3I_8$ ·H₂O.

Figure S5. ATR-FTIR spectrum for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S6. Raman spectrum for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S7. ATR-FTIR spectrum for $Cs_2Hg_3I_8$ ·H₂O.

Figure S8. Raman spectrum for $Cs_2Hg_3I_8$ ·H₂O.

Figure S9. UV-Vis absorption spectrum for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S10. UV-Vis absorption spectrum for $Cs_2Hg_3I_8$ ·H₂O.

Figure S11. Total and partial density of states for compounds Cs₂Hg₂Br₂I₄·H₂O using the rPBE/norm-conserving pseudopotential method.

Figure S12. Total and partial density of states for compounds $Cs_2Hg_3I_8$ ·H₂O using the rPBE/norm-conserving pseudopotential method.

Figure S13. The band structures of $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S14. The band structures of $Cs_2Hg_3I_8$ ·H₂O.

Figure S15. Calculated Refractive Indices for $Cs_2Hg_2Br_2I_4$ ·H₂O.

Figure S16. Calculated Refractive Indices for $Cs_2Hg_3I_8$ ·H₂O. In the whole wavelength range, the refractive indices n_x are the same as n_y .