Ligand-based Molecular Recognition and Dioxygen Splitting: An Endo Epoxide Ending

Peter E. Sues, Matthew W. Forbes, Alan J. Lough, and Robert H. Morris*

Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada

Table of Contents:

Selected Bond Lengths and Angles for 2 and 5	S2
Crystallographic Data Tables for Compounds 2 and 5	S 3
VT NMR Discussion	S 4
Electrochemical Discussion	S5
Cartesian Coordinates and Free Energies of Optimized Structures	S6-S7
Full Gaussian09 Reference	S 8

Table C1	Salastad Dand	I anotha (Å)	and Angles	(dea) for 1	and 5
Table 51.	Selected Dolla	Lenguis (A)	and Angles	(deg) for 2	and 5.

2	5
gths (Å)	
2.279(2)	2.331(4)
2.299(2)	2.277(4)
2.377(2)	2.376(4)
1.473(9)	1.32(2)
les (deg)	
83.55(6)	81.9(2)
100.64(6)	89.9(2)
91.01(6)	89.4(2)
	$\begin{array}{c} \textbf{2} \\ \text{gths (Å)} \\ 2.279(2) \\ 2.299(2) \\ 2.377(2) \\ 1.473(9) \\ \text{les (deg)} \\ 83.55(6) \\ 100.64(6) \\ 91.01(6) \end{array}$

	2	5	
empirical formula	$C_{48}H_{47}O_2P_3Ru$	$C_{48}H_{47}P_3RuS$	
FW	849.84	949.90	
lattice type	monoclinic	triclinic	
space group	C2/c	P-1	
Т, К	150(2)	147(2)	
<i>a</i> , Å	22.139(4)	10.691(1)	
b, Å	11.663 (2)	12.001(2)	
<i>c</i> , Å	33.324(6)	19.006(2)	
α , deg	90	73.029(9)	
β , deg	104.066(6)	88.592(9)	
γ, deg	90	70.042(9)	
$V, Å^3$	8347(3)	2184.8(4)	
Z	8	2	
$ ho_{ m calc}/ m Mg~m^{-3}$	1.353	1.292	
μ (Cu, K α) mm ⁻¹	0.529	4.619	
F(000)	3520	880	
cryst size, mm ³	0.28 x 0.20 x 0.20	0.03 x 0.02 x 0.02	
range θ collected, deg	1.90 to 27.52	4.10 to 66.74	
reflns collected/unique	20144/9529	43998/7367	
abs cor	Semi-empirical	from equivalents	
Max and min transmn coeff.	0.7456 and 0.7122	0.7528 and 0.6458	
goodness of fit	1.040	1.147	
$R_1(I>2\sigma(I))^a$	0.0350	0.0556	
wR_2 (all data) ^{<i>a</i>}	0.0800	0.1713	
peak and hole, e Å ⁻³	0.376 and -0.417	1.274 and -2.671	
^{<i>a</i>} Definition of R indices: $R_1 = \Sigma (F_{\rm O} - F_{\rm C}) / \Sigma (F_{\rm O}); w R_2 = [\Sigma [w (F_{\rm O}^2 - F_{\rm C}^2)^2] / [\Sigma [w (F_{\rm O}^2)^2]]^{1/2}$			

Table S2. Selected Crystal Data, Data Collection, and Refinement Parameters for Compounds 2and 5.

VT NMR Discussion

Figure S1. Variable temperature ³¹P {¹H} NMR (THF- d_8) spectra of the oxygen activation reaction mixture. The top spectrum was taken at a temperature of -80°C, while bottom spectrum was taken at a temperature of -60°C.

In the spectrum taken at -80°C the starting material can be seen at 82 and 22 ppm, the product epoxide can be seen around 71 ppm (the peaks for the phosphoryl and dppen ligands overlap), and the peroxointermediate can be seen at 78 and 60 ppm. Upon heating to -60°C the peroxo-intermediate disappeared, and the integration value for the product increased in a roughly proportional amount to the disappearance of the intermediate species (it should be noted ³¹P NMR integrations are not qualitative, and this is purely a qualitative observation)..

Electrochemical Discussion

Figure S2. Pictorial representations of the HOMO (left) and SOMO (right) for A and B, respectively.

We have assigned the two quasi-reversible redox couples that were detected with an E_{pa} and E_{pc} of 0.51V and 0.25V, as well as -0.48V and -0.73V vs. SCE, as metal- and ligand-based, respectively, based on the molecular orbitals of **A** and **B** generated by our computational studies (Figures 4 and S1). The HOMO of **A** has a significant ligand-based contribution, while the SOMO of **B** has more metal character, and as such we view the first oxidation of **1** as removal of a phosphido electron and the second oxidation as removal of a d-electron.

Cartesian Coordinates and Free Energies of Optimized Structures.

O_2			
G°_{solv}	-94290.6	391018	
0	0.00000	0.00000	0.60313
0	0.00000	0.00000	-0.60313
Α			
G°_{solv}	-874230.	6690071	
Ru	-0.37586	0.00508	0.00004
Р	1.27557	-0.39720	1.50312
Р	1.27546	-0.39784	-1.50297
Р	0.33017	2.31481	-0.00046
С	2.89112	-0.65529	-0.66679
Н	3.79917	-0.80031	-1.25288
С	2.89117	-0.65495	0.66689
Н	3.79928	-0.79968	1.25298
С	-2.44950	0.48460	0.71625
С	-2.11183	-0.83106	1.14944
С	-1.92112	-1.65815	0.00032
С	-2.11178	-0.83152	-1.14914
С	-2.44943	0.48432	-0.71649
Н	1.32361	2.43483	1.02999
Н	1.32366	2.43443	-1.03087
Н	1.64938	0.55617	2.48731
Н	1.64920	0.55515	-2.48755
Н	1.22739	-1.53107	-2.35529
Н	-2.03234	-1.15537	-2.18164
Н	-2.67609	1.33008	-1.35569
Н	-2.67617	1.33062	1.35510
Н	-2.03248	-1.15451	2.18207
Н	-1.69429	-2.71778	0.00053
Η	1.22765	-1.53011	2.35587
0.1			
O_2			
G°_{solv}	-94358.5	043675	
0	0.00000	0.00000	0.66395
0	0.00000	0.00000	-0.66395
р			
D D	074100	0.0000	
G [°] solv	-874128.0	0686235	0.00/77
Ku	0.3/398	0.06376	-0.08675
P	-1.35444	-0.91399	-1.29313
P	-1.27758	0.29824	1.49086
Р С	-0.10882	2.18675	-0./9/52
C	-2.88878	-0.29195	0.86167
Н	-3.77638	-0.20397	1.48792

С	-2.92384	-0.82102	-0.36157
Η	-3.84192	-1.20103	-0.80923
С	2.49158	-0.30754	-0.83026
С	1.88674	-1.55523	-0.50626
С	1.57287	-1.55992	0.88475
С	1.98509	-0.29551	1.42206
С	2.54125	0.47638	0.36447
Η	-1.32846	2.78690	-0.38545
Η	0.77888	3.21006	-0.38138
Η	-1.71704	-0.41976	-2.56445
Η	-1.60694	1.56151	2.02697
Η	-1.10988	-0.43168	2.68805
Η	1.89651	0.01643	2.45691
Η	2.94293	1.47971	0.45218
Η	2.84651	-0.00444	-1.80826
Η	1.69860	-2.36633	-1.20120
Η	1.13747	-2.38076	1.44249
Η	-1.25226	-2.28813	-1.59978

С

-968523.	6002246	
-0.57407	-0.02077	-0.03371
1.07404	-0.53614	1.48932
0.79772	-1.22503	-1.41789
0.57816	1.86008	-0.60210
2.21584	-1.95412	-0.51851
2.92390	-2.59734	-1.04124
2.35843	-1.61368	0.76212
3.19327	-1.95847	1.37259
-2.43574	0.97463	0.71775
-2.28840	-0.27121	1.39181
-2.35968	-1.32454	0.43093
-2.54214	-0.71600	-0.85198
-2.59676	0.69549	-0.68089
1.11099	1.92665	-1.91553
-0.25171	3.02079	-0.62709
1.77148	0.38397	2.29086
1.45366	-0.60023	-2.50932
0.26403	-2.34010	-2.10771
-2.63244	-1.24257	-1.79612
-2.75212	1.42835	-1.46477
-2.44751	1.95480	1.18084
-2.14160	-0.39693	2.45950
-2.31601	-2.38733	0.63781
0.59246	-1.38788	2.52291
2.64783	1.20793	0.06069
	$\begin{array}{r} -968523.\\ -0.57407\\ 1.07404\\ 0.79772\\ 0.57816\\ 2.21584\\ 2.92390\\ 2.35843\\ 3.19327\\ -2.43574\\ -2.28840\\ -2.35968\\ -2.54214\\ -2.59676\\ 1.11099\\ -0.25171\\ 1.77148\\ 1.45366\\ 0.26403\\ -2.63244\\ -2.75212\\ -2.44751\\ -2.14160\\ -2.31601\\ 0.59246\\ 2.64783\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

0	1.80623	2.40246	0.30598
TS _{C,I})		
G°_{sol}	v -968553.	1942865	
Ru	-0.61294	-0.03889	-0.00519
Р	0.84512	-1.08516	-1.44512
Р	0.95636	-0.68120	1.54308
Р	0.65461	1.85500	-0.42818
0	2.58934	0.56748	0.03052
0	1.98615	2.25133	0.34287
С	2.49166	-1.22272	0.71189
Н	3.38907	-1.42471	1.29440
С	2.43306	-1.46778	-0.62974
Η	3.29660	-1.81027	-1.19626
С	-2.47016	-1.31624	0.21126
С	-2.54243	-0.57644	-1.01182
С	-2.55717	0.81315	-0.70199
С	-2.42488	-0.36765	1.27672
С	-2.48177	0.94562	0.72549
Н	-0.13321	3.04018	-0.33377
Η	0.98988	1.95009	-1.81219
Η	1.28740	-0.40252	-2.60643
Н	0.46754	-2.30640	-2.05755
Н	0.61350	-1.76080	2.39964
Н	1.48028	0.20041	2.51224
Н	-2.47833	-2.39521	0.31065
Н	-2.59042	-1.00219	-2.00837
Н	-2.63426	1.62569	-1.41613
Н	-2.49434	1.87470	1.28394
Н	-2.35967	-0.60544	2.33338

-2.60325	-0.02707	-0.94464
-2.32473	-1.39300	-0.61990
-2.17887	-1.50959	0.78842
-2.34058	-0.19659	1.34301
-2.62066	0.70972	0.28296
-0.84494	2.51447	-1.51383
1.17136	1.83749	-1.77876
1.44982	-0.56729	-2.56135
0.86676	-2.46341	-1.72943
0.90689	-1.00440	2.68832
1.46982	1.03237	2.26427
-1.98801	-2.42088	1.34315
-2.24424	-2.20563	-1.33456
-2.80698	0.36842	-1.93320
-2.81084	1.77251	0.38882
-2.28923	0.06023	2.39555
	-2.60325 -2.32473 -2.17887 -2.34058 -2.62066 -0.84494 1.17136 1.44982 0.86676 0.90689 1.46982 -1.98801 -2.24424 -2.80698 -2.81084 -2.28923	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

D

G°_{solv}	-968622.	5312716	
R	-0.55991	-0.11643	-0.02583
Р	1.02205	-1.11643	-1.32428
Р	1.05655	-0.13484	1.58109
Р	0.21146	1.95812	-0.71897
0	3.16412	0.08948	-0.14344
0	0.69507	2.99514	0.29455
С	2.68320	-0.72444	0.91901
Н	3.44543	-1.09173	1.60940
С	2.66398	-1.20310	-0.46495
Η	3.41115	-1.92479	-0.80178

Full Gaussian09 Reference. Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.