Supporting Information

Magnesium Complexes Containing Biphenyl-based Tridentate Iminophenolate Ligands for Ring-Opening Polymerization of *rac*-Lactide and α-Methyltrimethylene Carbonate

Wei Yi and Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

Haiyan Ma: haiyanma@ecust.edu.cn

* To whom correspondence should be addressed. Tel./Fax: +86 21 64253519. E-mail: <u>haiyanma@ecust.edu.cn</u>.

Contents:

Table S1. The chemical shifts of dimethylamino resonances in the ¹H NMR spectraof magnesium complexes and corresponding proligands

Figure S1. A) ¹H NMR trace spectrum of reaction between complex 2 and one equiv. of 2-propanol; B) ¹H NMR spectrum of free ligand $L^{2}H$; C) ¹H NMR spectrum of complex 2.

Figure S2. ¹H NMR spectrum of *rac*-lactide oligomer obtained by complex $2/^{i}$ PrOH system in CDCl₃.

Figure S3. Homonuclear decoupled ¹H NMR spectrum of PLA produced from *rac*-lactide using **3** as initiator at 25 $^{\circ}$ C.

Figure S4. Homonuclear decoupled ¹H NMR spectrum of PLA produced from *rac*-lactide using **3** as initiator at -38 ^oC.

Figure S5. ¹H NMR spectrum of active α -MeTMC oligomer by $2/i^{i}$ PrOH.

Figure S6. The DSC curve of poly(α -MeTMC) produced from α -MeTMC using **1** as initiator.

Figure S7. The DSC curve of poly(α -MeTMC) produced from α -MeTMC using **2** as initiator.

Figure S8. The DSC curve of poly(α -MeTMC) produced from α -MeTMC using **3** as initiator.

Figure S9. The DSC curve of poly(α -MeTMC) produced from α -MeTMC using **4** as initiator.

Complem	$Ar-N(CH_3)_2$		Lizzad	$Ar-N(CH_3)_2$
Complex	C ₆ D ₆	C_6D_6 with THF ^b	Ligand	C ₆ D ₆
1		2.22 (s) ^c	$L^{1}H$	2.37
2	2.22 (br)	2.10 (s)	$L^{2}H$	2.21
3		2.23 (s) ^{c}	L ³ H	2.17
4	2.55 (br)	2.10 (s)	$L^{4}H$	2.32

Table S1. The chemical shifts of dimethyl amino resonances in the ¹H NMR spectra

C	•	1	1	1.	1º 1 a
of n	nagnesiiim	complexes	and	corresponding	proligands
01 11	inagnosiani	complexes	una	conception	pronganas

^{*a*}: In ppm; ^{*b*}: One tiny drop of THF was added to the solution of magnesium complex

in C_6D_6 ; ^{*c*}: The corresponding resonance of complexes **1** and **3** in C_6D_6 .

Figure S1. A) ¹H NMR trace spectrum of reaction between complex 2 and one equiv. of 2-propanol; B) ¹H NMR spectrum of free ligand $L^{2}H$; C) ¹H NMR spectrum of complex 2 (C₆D₆, 400 MHz, *, hexane; **, HN(SiMe₃)₂; #, methyl signal of toluene)

Figure S2. ¹H NMR spectrum of *rac*-lactide oligomer obtained by complex 2/iPrOH

system ($[rac-LA]_0$: $[Mg]_0$: $[^iPrOH]_0 = 20:1:1$, at 25 °C) in CDCl₃.

Figure S3. Homonuclear decoupled ¹H NMR spectrum of PLA produced from *rac*-lactide using **3** as initiator. ([*rac*-LA]₀ = 1 M, [**3**] = [^{*i*}PrOH] = 0.5 mM, 94% monomer conv., in THF, 25 °C, $P_r = 0.77$.)

Figure S4. Homonuclear decoupled ¹H NMR spectrum of PLA produced from *rac*-lactide using **3** as initiator. ([*rac*-LA]₀ = 1 M, [**3**] = [^{*i*}PrOH] = 0.5 mM, 73% monomer conv., in THF, -38 °C, $P_r = 0.81$.)

Figure S6. The DSC curves of poly(α -MeTMC) produced from α -MeTMC using **1** as initiator. ([α -MeTMC]₀ = 1 M, [**1**] = 0.5 mM, 90% monomer conv., in toluene, 70 °C, T_{g} = 4.32 °C.)

Figure S7. The DSC curves of poly(α -MeTMC) produced from α -MeTMC using 2 as initiator. ([α -MeTMC]₀ = 1 M, [2] = 0.5 mM, 90% monomer conv., in toluene, 70 °C, T_{g} = 4.01 °C.)

Figure S8. The DSC curves of poly(α-MeTMC) produced from α-MeTMC using **3** as initiator. ([α-MeTMC]₀ = 1 M, [**3**] = 0.5 mM, 92% monomer conv., in toluene, 70 °C, $T_{\rm g}$ = -7.58 °C.)

Figure S9. The DSC curves of poly(α -MeTMC) produced from α -MeTMC using 4 as initiator. ([α -MeTMC]₀ = 1 M, [4] = 0.5 mM, 88% monomer conv., in toluene, 70 °C, $T_{\rm g} = 1.43$ °C.)