Supporting Information for

New oligogermane with five coordinate germanium atom: the preparation of 1-germylgermatrane

Kirill V. Zaitsev,* Andrei V. Churakov, Oleg Kh. Poleshchuk, Yuri F. Oprunenko, Galina S. Zaitseva and Sergey S. Karlov*

Chemistry Department, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia Russian Acad. Sci., N.S. Kurnakov General and Inorganic Chem. Inst., Moscow, Russia National Research Tomsk Polytechnic University, Tomsk, Russia Tomsk State Pedagogical University, Tomsk, Russia

E-mail: zaitsev@org.chem.msu.ru (KVZ), sergej@org.chem.msu.ru (SSK)

Table of Contents

Experimental					
	Methods and Materials	S3			
	X-ray Crystallography	S3			
	Table S1 Crystal data for germatrane 1	S4			
	Synthesis	S5			
Spectra		S6 to S9			
	Fig. 1 ¹ H NMR Spectrum (400.130 MHz, CDCl ₃) of Germatrane 1	S6			
	Fig. 2 ¹³ C NMR Spectrum (100.613 MHz, CDCl ₃) of Germatrane 1	S7			
	Fig. 3 ²⁹ Si NMR Spectrum (79.495 MHz, CDCl ₃) of Germatrane 1	S8			
	Fig. 4, 5 UV/vis spectrum of germatrane 1 in CH_2Cl_2	S9			
DFT calculations					
References					
Table S2 The NMR spectroscopy data calculated for germatrane 1					
Table S	3 NBO analysis of the germatrane 1 ,				
calculate	ed at B3LYP/DGDZVP level of the theory	S13			
Table S	4 The thermodynamic characteristics of the				
complex	es (CH ₃) ₃ MMCl ₃ *N(CH ₃) ₃ (kcal/mol)	S14			
Fig. 6 St	andard orientation and Cartesian coordinates for 1	S15			
Calculat	ed molecular structure for Me ₃ Si-SiCl ₃ *NMe ₃ , transition states				
and deco	omposition products as well as their Cartesian coordinates	S19			
Calculated molecular structure for Me ₃ Ge-GeCl ₃ *NMe ₃ , transition states					
and decomposition products as well as their Cartesian coordinates					
Calculated molecular structure for Me ₃ Sn-SnCl ₃ *NMe ₃ , transition states					
and deco	omposition products as well as their Cartesian coordinates	S29			
Fig. S7 Interaction of O lone electron pairs with the Ge-O antibonding orbitals					

Experimental

Methods and Materials. All manipulations were performed under a dry, oxygen-free argon atmosphere using standard Schlenk techniques. Triethanolamine (Aldrich), triethylamine (Aldrich) were distilled prior to use and stored over activated molecular sieves (4Å). Solvents were dried using usual procedures. Tetrahydrofuran, diethyl ether, triethylamine were stored under solid KOH and than distilled under sodium/benzophenone. Toluene and *n*-hexane were refluxed and distilled under sodium. Dichloromethane and acetonitrile were distilled under CaH₂. C_6D_6 was distilled over sodium under argon. CDCl₃ was distilled over CaH₂ under argon.

¹H NMR (400.130 MHz), ¹³C NMR (100.613 MHz), ²⁹Si (79.495 MHz) spectra were recorded with a Bruker 400 spectrometer at 298 K. Chemical shifts are given in ppm relative to internal Me₄Si. Elemental analyses were carried out by the Microanalytical Laboratory of the Chemistry Department of the Moscow State University using Heraeus Vario Elementar instrument. UV/visible spectra were obtained using two ray spectrophotometer Evolution 300 «Thermo Scientific» with cuvette of 0.10 cm long. Mass spectra (EI-MS, 70 eV) were recorded on a quadropoule mass spectrometer FINNIGAN MAT INCOS 50 with direct insertion; all assignments were made with reference to the most abundant isotopes.

X-ray crystallography. Experimental intensities were measured on a Bruker SMART APEX II diffractometer using ω -scan mode. Absorption correction based on measurements of equivalent reflections was applied.¹ The structure was solved be direct methods and refined by full matrix least-squares based on F^2 with anisotropic thermal parameters for all non-hydrogen atoms.² All disordered –SiMe₃ groups were refined with restrained Si-C distances. All hydrogen atoms were placed in calculated positions and refined using a riding model. The structure of **1** contains three crystallographically independent molecules. One of them occupies general position while two others lie on mirror planes. In all molecules atrane fragments and all –SiMe₃ groups are disordered over two positions with occupancy ratios 0.5/0.5. The structure was checked for supercell and low-symmetry space groups. These possibilities were not confirmed.

Table S1 Crystal data for germatrane 1

Empirical formula	$C_{15}H_{39}Ge_2NO_3Si_3$
M _r	510.92
Crystal system	Monoclinic
Space group	P21/m
a, Á	11.3567(16)
b, Å	27.748(4)
<i>c</i> , Å	16.127(2)
β , degree	102.683(2)
V, Å ³	4957.8(12)
D _{calcd} , g*cm ⁻³	1.369
Ζ	8
F(000)	2128
μ (Mo Kα), mm ⁻¹	2.582
temperature, K	130(2)
Total reflections	30945
Unique reflections (R _{int})	9333 (0.0726)
Parameters	524
Restraints	204
$R_1 (I \ge 2\sigma(I))$	0.0592
wR ₂ (all reflections)	0.1391
goodness-of-fit on F ²	1.055
Min/max residual electron density, e*Å ⁻³	-0.668 / 1.321

Synthesis. The known compounds $(TMS)_3GeGeCl_3^3$ and $TfOGe(OCH_2CH_2)_3N^4$ were obtained using literature procedure.

Synthesis of 1. *Method 1*. At -78°C solution of N(CH₂CH₂OH)₃ (0.16 ml, 1.17 mmol), Et₃N (0.50 ml, 3.50 mmol) in CH₂Cl₂ (30 ml) was added dropwise over 1 h to solution of (Me₃Si)₃GeGeCl₃ (0.55 g, 1.17 mmol) in CH₂Cl₂ (70 ml). The reaction mixture was slowly warmed to room temperature and mixed for 1 h more. All volatiles were removed in vacuum, benzene (50 ml) was added to the residue and the suspension formed was filtered. The solvent was removed, hexane (40 ml) was added, and the mixture was filtered. The volatiles were removed and the solid formed was recrystallized from hexane/CH₂Cl₂ (1:5). After filtration and concentration the solution formed was stored at -25 °C for 3 d. The precipitate formed was isolated and dried in high vacuum. The compound **1** was obtained as a white solid (0.11 g, 19%). The crystals suitable for X-ray analysis were obtained by recrystallization from pentane.

Method 2. The solution of $(Me_3Si)_3GeK^5$ generated *in situ* from $(Me_3Si)_4Ge$ (0.91 g, 2.50 mmol) and *t*-BuOK (0.28 g, 2.50 mmol) in THF (50 ml) was added dropwise to slurry of TfOGe(OCH₂CH₂)₃N in xylene (15 ml) during 1 h at room temperature. The reaction mixture was stirred overnight, the volatiles were removed under vacuum, pentane (30 ml) was added and the suspension obtained was filtered. After removal of solvent the residue was recrystallized from acetonitrile at -30 °C yielding compound **1** (0.43 g, 34%) as a white powder.

¹H NMR (CDCl₃) δ 3.65 (t, *J* = 5.6 Hz, 6H, 3OCH₂), 2.68 (t, *J* = 5.6 Hz, 6H, 3NCH₂), 0.25 (s, 27H, 3Si(CH₃)₃). ¹³C NMR (CDCl₃) δ 57.84 (OCH₂), 53.53 (NCH₂), 2.67 (SiCH₃). ¹H NMR (C₆D₆) δ 3.43 (t, *J* = 5.4 Hz, 6H, 3OCH₂), 2.04 (t, *J* = 5.4 Hz, 6H, 3NCH₂), 0.26 (s, 27H, 3Si(CH₃)₃). ¹³C NMR (C₆D₆) δ 57.88 (OCH₂), 52.87 (NCH₂), 2.79 (SiCH₃). ²⁹Si NMR (C₆D₆) δ

-6.37. UV/vis (CH₂Cl₂) λ_{max} nm (ϵ , M⁻¹ cm⁻¹): 221 (2.3×10⁴). MS (EI) *m/z* 513 (M⁺, 5), 367 (A = M - 2TMS, 12), 293 ((Me₃Si)₃Ge, 4), 220 (Ge(OCH₂CH₂)₃N, 6), 219 ((Me₃Si)₂Ge - H, 12), 147 (Me₃SiGe, 15), 132 (Me₃SiGe - Me, 5), 73 (Me₃Si, 100). Calcd., %: C 35.26, H 7.69, N 2.74. Found, %: C 35.18, H 7.79, N 2.70. C₁₅H₃₉Ge₂NO₃Si₃.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

Fig. S1 ¹H NMR Spectrum (400.130 MHz, CDCl₃) of Germatrane 1.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2014

Fig. S2¹³C NMR Spectrum (100.613 MHz, CDCl₃) of Germatrane 1.

Fig. S3 ²⁹Si NMR Spectrum (79.495 MHz, CDCl₃) of Germatrane 1.

Fig. S5 UV/vis spectrum of compound 1 in CH_2Cl_2 .

DFT calculations. The nonlocal hybrid three-parameter B3LYP⁶ density functional has been used throughout the study because previous theoretical calculations have shown that B3LYP approach is a cost-effective method for studying metal containing systems.⁷ Even at calculations of the thermodynamic parameters, B3LYP results compare well to the highly exact G2 (MP2, SVP) methods, as well as to the experimental values.⁸ We have used DGDZVP basis set for all the atoms at the B3LYP level. DGDZVP basis set is all-electron, double- ζ valence polarized basis sets which were optimized specifically for DFT methods.⁹

The calculations were performed with full geometry optimization and used the GAUSSIAN'03 program package.¹⁰ The absence of imaginary vibration frequencies confirmed the stationary character of the structures. The formation enthalpies were corrected for zero-point vibration energy (ZPVE) and reduced to the normal conditions (298.15 K, 1 atm) using a thermal correction to the enthalpy. The electronic structures of the compounds were examined by NBO analysis.¹¹ The molecular orbitals were constructed using the GaussView program.

Additional single-point calculations have been carried out for Ge dimers using the binding energy partition scheme implemented in the ADF program.¹² This scheme has been widely applied to a large number of systems including metalcontaining ones.¹³ We have used the BP86 functional of Becke⁶ and the correlation functional of Perdew.¹⁴ Scalar relativistic effects have been considered using the ZORA formalism.¹⁵ Uncontracted Slater-type orbitals (STOs) using triple-ζ basis sets augmented by two sets of polarization functions were employed for the SCF calculations.¹⁶

It is important to recall that in the NBO analysis the electronic wave function is interpreted in terms of a set of occupied Lewis and a set of unoccupied non-Lewis localized orbitals.¹¹ Delocalization effects can be identified from the presence of offdiagonal elements of the Fock matrix in the NBO basis. The strengths of these delocalization interactions, $E_{ij}^{(2)}$, are estimated by second-order perturbation theory.

References

7 8

1 G. M. Sheldrick, SADABS, Program for scaling and correction of area detector data, University of Göttingen, Germany, 1997.

- 2 G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- 3 S. P. Mallela and R. A. Geanangel, *Inorg. Chem.* 1994, **33**, 1115.

4 S. S. Karlov, P. L. Shutov, N. G. Akhmedov, M. A. Seip, J. Lorberth and G. S. Zaitseva, *J. Organomet. Chem.* 2000, **598**, 387.

- 5 J. Fischer, J. Baumgartner and C. Marschner, *Organometallics* 2005, 24, 1263.
- 6 A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098.
 - O. K. Poleshchuk, E. L. Shevchenko, V. Branchadell, M. Lein and G. Frenking, Int. J. Quantum Chem. 2005, 101, 869.
 - L. A. Curtiss, K. Raghavachari, P. C. Redfern and J. A. Pople, J. Chem. Phys. 1997, 106, 1063.

9 (a) N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, *Can. J. Chem.* 1992, **70**, 560; (b) C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs and D. A. Dixon, *J. Phys. Chem.* 1992, **96**, 6630.

10 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Closlowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andress, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defress, J. Baker, J. P. Stewart, C. Gonzales and J. A. Pople, *Gaussian 03, Revision B03; Gaussian, Inc:* Pittsburg, PA, 2003.

11 E. D. Glendening, A. E. Reed, J. E.Carpenter and F. Weinhold, *NBO Version 3.1*.

12 E. J. Baerends, J. A. Autschbach, A. Berces, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Gruning, F. E. Harris, P. van den Hoek, H. Jacobsen, G. van Kessel, F. Kootstra, E. van Lenthe, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Sola, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, O. Visser, E. Wezenbeek, G. Wiesenekker, T. K. Woo and T. Ziegler, *ADF2009.01, ScientificComputing&Modelling NV*, The Netherlands, 2009.

- 13 K. K. Pandey and P. P. Power, Organometallics 2011, 30, 3353.
- 14 (a) J. P. Perdew, *Phys. Rev. B* 1986, **34**, 7406; (b) J. P. Perdew, *Phys. Rev. B* 1986, **33**, 8822.
- 15 J. G. Snijders, E. J. Baerends and P. Vernooijs, *At.DataNucl.Data Tables* 1982, 26, 483.
- 16 E. J. Baerends, D. E. Ellis and P. Ros, *Chem. Phys.* 1973, **2**, 41.

Nucleus	Group	Exp, δ , ppm	Calcd., B3LYP/6-311+G(2d,p) GIAO relative TMS
$^{1}\mathrm{H}$	SiMe ₃	0.25 (CDCl ₃), 0.26 (C ₆ D ₆)	0.1-0.8
	NCH ₂	2.68 (CDCl ₃), 2.04 (C ₆ D ₆)	2.6-3.0
	OCH ₂	3.65 (CDCl ₃), 3.43 (C ₆ D ₆)	3.7-4.1
¹³ C	SiMe ₃	2.67 (CDCl ₃), 2.79 (C ₆ D ₆)	2.7-3.1
	NCH ₂	53.53 (CDCl ₃), 52.87 (C ₆ D ₆)	60.1; 65.4; 65.8
	OCH ₂	57.84 (CDCl ₃), 57.88 (C ₆ D ₆)	64.6; 68.4; 69.1
²⁹ Si		-6.37 (C ₆ D ₆)	2.0; 3.0
¹⁵ N		-	34.3 (relative to NH_3)
¹⁷ O		-	95.3; 112.1; 114.1 (relative to H_2O)

Table S2. The NMR spectroscopy data for germatrane 1

Bond	Hybridization	Population, e	Interaction between N, O lone pairs and anti-bonding Ge-O orbitals	Eij ⁽²⁾ ,
				kcal/mol
BD(Ge-Ge)	sp ^{2.4}	1.860	BD(Ge-Ge)→BD*(Ge-O)	20
BD(Ge-O)	sp ^{3.2}	1.951	LP(O)→BD*(Ge-O)	38
BD(Ge-Si)	sp ^{2.7}	1.927	LP(N)→BD*(Ge-O)	17
LP(O)	sp ^{1.2}	1.949		
LP(O)	р	1.918		
LP(N)	р	1.819		

Table S3 NBO analysis of the germatrane 1, calculated at B3LYP/DGDZVP level of the theory

Reaction	ΔG	ΔΕ	E _a (B3LYP/DGDZVP)	E _a (BP86/TZ2P+)
$(CH_3)_3SiSiCl_3*N(CH_3)_3$ $(CH_3)_3SiCl + SiCl_2*N(CH_3)_3$	-> -6	-11	38	42
(CH ₃) ₃ GeGeCl ₃ <n(ch<sub>3)₃</n(ch<sub>	-33	-22	28	22
$(CH_3)_3SnSnCl_3{<}{-}{-}{-}N(CH_3)_3$	-21	-16	83	72

Table S4 The thermodynamic characteristics of the complexes (kcal/mol)

Fig. S6 Standard orientation of molecule 1

Standard orientation:

Center	Atomic	At	omic	Coordin	ates	s (Angstrom	ıs)
Number	Numb	er	Туре	х	Y	Z	
1	32	0	-1.269530	-0.0304	03	-0.033602	
2	32	0	1.188324	0.00387	79	-0.002745	
3	14	0	1.935478	-1.4556	01	-1.786693	
4	14	0	1.793783	-0.8241	55	2.194323	
5	14	0	1.829798	2.31426	62	-0.348119	

6	6	0	3.774482	-1.123424	-2.133711
7	6	0	0.947591	-1.144112	-3.372979
8	6	0	1.723127	-3.269411	-1.282798
9	6	0	3.637988	-1.283869	2.213314
10	6	0	1.477789	0.508265	3.504044
11	6	0	0.774558	-2.358265	2.639094
12	6	0	3.669488	2.534897	0.077366
13	6	0	0.807603	3.466433	0.756510
14	6	0	1.561972	2.811074	-2.157288
15	8	0	-1.689232	1.419896	-1.107428
16	8	0	-1.822983	0.200554	1.712239
17	8	0	-1.624125	-1.745506	-0.635220
18	7	0	-3.821926	-0.103495	-0.216277
19	6	0	-4.211393	0.029703	1.192612
20	6	0	-3.106437	0.720409	2.013863
21	6	0	-4.107961	1.041010	-1.085306
22	6	0	-2.952166	2.058320	-1.043007
23	6	0	-4.027188	-1.440758	-0.788356
24	6	0	-2.873260	-2.352750	-0.357900
25	1	0	4.146026	-1.807296	-2.907911
26	1	0	3.942962	-0.101078	-2.490779
27	1	0	4.392895	-1.268854	-1.240692
28	1	0	1.339180	-1.760462	-4.192926
29	1	0	-0.107149	-1.402123	-3.231146
30	1	0	0.996870	-0.096720	-3.689060
31	1	0	2.019328	-3.934729	-2.104317
32	1	0	2.334536	-3.528327	-0.411005

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

33	1	0	0.676156	-3.476385	-1.038154
34	1	0	3.938000	-1.618689	3.214859
35	1	0	3.861283	-2.098795	1.515090
36	1	0	4.275530	-0.433609	1.945336
37	1	0	1.709833	0.125077	4.506333
38	1	0	2.092806	1.400195	3.340837
39	1	0	0.426015	0.813019	3.493067
40	1	0	1.085403	-2.750491	3.616398
41	1	0	-0.290417	-2.110240	2.698665
42	1	0	0.892460	-3.160659	1.903193
43	1	0	3.979907	3.572508	-0.102298
44	1	0	3.877783	2.308623	1.129396
45	1	0	4.310656	1.889310	-0.533613
46	1	0	1.135128	4.506670	0.630319
47	1	0	-0.252806	3.412006	0.489628
48	1	0	0.901232	3.212524	1.817661
49	1	0	1.801448	3.872507	-2.304092
50	1	0	2.195469	2.233314	-2.840009
51	1	0	0.518018	2.655488	-2.448631
52	1	0	-4.362412	-0.974741	1.597755
53	1	0	-5.162319	0.575432	1.299595
54	1	0	-3.129585	1.807479	1.855646
55	1	0	-3.298958	0.546570	3.080617
56	1	0	-5.057094	1.532670	-0.819373
57	1	0	-4.203381	0.673722	-2.109913
58	1	0	-3.038494	2.727376	-1.909142
59	1	0	-3.021411	2.686385	-0.143326

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

60	1	0	-4.005871	-1.354186	-1.877293
61	1	0	-4.998709	-1.874200	-0.502155
62	1	0	-2.954470	-2.597734	0.711861
63	1	0	-2.927013	-3.296095	-0.916045

TS

15	17	0	-0.236656	1.867009	-0.600398
16	6	0	-3.850169 1	.023720	0.941611
17	1	0	-4.953729 1	.096529	1.014326
18	1	0	-3.456319 0	0.808334	1.940339
19	1	0	-3.464285 2	2.000312	0.631489
20	1	0	-4.936196 -1	.445949	0.447674
21	1	0	-3.429088 -2	2.084718	-0.261991
22	1	0	-3.447238 -1	.547735	1.424904
23	6	0	-3.834425 0	0.293774	-1.358310
24	1	0	-3.450303 1	.273333	-1.661338
25	1	0	-3.426766 -0).454514	-2.045875
26	1	0	-4.936697 0	0.304710	-1.473609
27	7	0	-3.404560 -0	0.002558	0.004421
28	6	0	-3.833913 -1	.332857	0.423359
29	14	0	2.862801 -(0.004087	0.007842
30	14	0	0.496896 (0.005479	-0.002696

<u>_</u>	G= -22:	53.639 a	e.			
Ci Si 2.694 130.1	Standar	d orienta	tion:			
	Center	Atom	ic A	tomic	Coordinat	es (Angstroms)
2.455	Numbe	er Nur	ıber	Туре	X	Ϋ́ Ζ
	1	6	0	3.469284	0.250334	-1.254724
	2	1	0	4.182965	-0.576219	-1.358203
	3	1	0	3.009951	0.416658	-2.235547
	4	1	0	4.001551	1.167128	-0.990089
	5	6	0	2.021892	-2.085949	-0.277596

6	1	0	3.038044 -2.485483 -0.142526
7	1	0	1.368923 -2.626860 0.416257
8	1	0	1.714479 -2.334981 -1.299158
9	6	0	2.634561 -0.036185 1.850193
10	1	0	3.324726 -0.847757 2.112090
11	1	0	3.113168 0.925300 2.051507
12	1	0	1.763989 -0.122146 2.508961
13	17	0	-1.251440 -1.634174 1.610278
14	17	0	1.447537 2.164909 -0.093397
15	17	0	-1.280650 -1.511365 -1.757189
16	6	0	-1.876975 1.835735 -1.189817
17	1	0	-2.618749 2.638186 -1.124762
18	1	0	-0.872688 2.259804 -1.219342
19	1	0	-2.061184 1.242465 -2.086134
20	1	0	-2.544587 2.582584 1.282315
21	1	0	-1.923407 1.146636 2.138911
22	1	0	-0.796045 2.207189 1.241327
23	6	0	-3.393581 0.381661 0.048860
24	1	0	-3.557977 -0.222035 -0.843254
25	1	0	-3.517674 -0.239741 0.934965
26	1	0	-4.114223 1.205650 0.073401
27	7	0	-2.007919 0.953770 0.021434
28	6	0	-1.799769 1.780482 1.259749
29	14	0	2.148516 -0.184945 0.032963
30	14	0	-0.530723 -0.464951 -0.043356

TS

16	6	0	3.246055	1.197964	0.720036
17	1	0	4.344494	1.193337	0.714837
18	1	0	2.890412	2.102712	0.227817
19	1	0	2.893795	1.184892	1.751230
20	1	0	4.343820	0.023384	-1.391681
21	1	0	2.890626	-0.855609	-1.933931
22	1	0	2.891734	0.922699	-1.903350
23	6	0	3.245776	-1.222156	0.676990
24	1	0	2.890771	-1.247199	1.706770
25	1	0	2.892667	-2.108718	0.150926
26	1	0	4.344175	-1.215480	0.674706
27	7	0	2.736357	0.000378	-0.000307
28	6	0	3.245401	0.024369	-1.397964
29	32	0	-2.205241	-0.000513	-0.000131
30	32	0	0.307825	-0.000397	0.000155

7	1	0	-2 177217 () 886099	-2 518483
8	1	0	-2.167274 -(0.893668	-2.514177
9	6	0	-3.097679	1.641219	0.705911
10	1	0	-4.181703	1.676077	0.548959
11	1	0	-2.894427	1.647916	1.778245
12	1	0	-2.648199	2.526847	0.250099
13	17	0	1.242262	2.017521	-1.151170
14	17	0	-0.964794	-0.003581	1.709932
15	17	0	1.233511	-2.006790	-1.164194
16	6	0	2.984978 -	1.222530	1.315402
17	1	0	4.063587 -	1.216993	1.519615
18	1	0	2.441915 -	1.232807	2.260721
19	1	0	2.732752 -	2.114700	0.743326
20	1	0	4.068659	1.189795	1.532089
21	1	0	2.738547	2.100523	0.769868
22	1	0	2.448404	1.200339	2.276738
23	6	0	3.398640	0.001336	-0.733535
24	1	0	3.155795 -	0.882580	-1.320915
25	1	0	3.161207	0.895323	-1.308081
26	1	0	4.472279 -	0.003691	-0.502084
27	7	0	2.616597 -	0.005452	0.538735
28	6	0	2.989670	1.200614	1.330264
29	32	0	-2.375364	0.000506	-0.118244
30	32	0	0.840236	0.002897	-0.034403

	16	6	0	-3.588022 -	-1.364574	0.307424
	17	1	0	-4.685773 -	-1.353846	0.307312
	18	1	0	-3.234840 -	-2.067023	-0.447676
	19	1	0	-3.231208 -	-1.676326	1.289162
	20	1	0	-4.683862	0.421932	-1.326965
	21	1	0	-3.225165	1.420594	-1.571204
	22	1	0	-3.236007 -	-0.279771	-2.098087
	23	6	0	-3.585437	0.952047	1.029177
	24	1	0	-3.230779	0.649627	2.014623
	25	1	0	-3.228581	1.957868	0.807413
	26	1	0	-4.683243	0.947442	1.021952
	27	50	0	2.288998	-0.000264	-0.000713
	28	50	0	-0.594165	-0.000299	-0.000608
	29	7	0	-3.075905	0.001499	-0.000501
	30	6	0	-3.586167	0.418788	-1.337930
1						

6	1	0	-3.612279 -0.009409 -2.274602
7	1	0	-2.095684 0.887886 -2.522555
8	1	0	-2.085994 -0.890398 -2.520594
9	6	0	-2.967079 1.659392 0.757117
10	1	0	-4.052616 1.701420 0.612519
11	1	0	-2.755424 1.662374 1.828328
12	1	0	-2.520079 2.547782 0.304086
13	17	0	1.372613 2.024160 -1.140815
14	17	0	-0.811168 -0.006136 1.730515
15	17	0	1.367233 -2.011392 -1.157133
16	6	0	3.135214 -1.224848 1.304382
17	1	0	4.217546 -1.220062 1.488214
18	1	0	2.610124 -1.237283 2.259642
19	1	0	2.872827 -2.116183 0.735711
20	1	0	4.222681 1.190514 1.503319
21	1	0	2.878926 2.101305 0.766974
22	1	0	2.616741 1.200599 2.278297
23	6	0	3.512983 0.002250 -0.749009
24	1	0	3.261067 -0.880825 -1.333606
25	1	0	3.266833 0.896259 -1.319536
26	1	0	4.590268 -0.003003 -0.536015
27	7	0	2.752322 -0.005618 0.537013
28	6	0	3.140009 1.200962 1.321886
29	50	0	-2.249711 0.000153 -0.093432
30	50	0	0.968601 0.002505 -0.028761

Complex of GeCl ₂ with NMe ₃ – the product of Me ₃ GeGeCl ₃ *NMe ₃ decomposition						
G= -7119.642 a.e.						
Standard orientation:						
2.403	Center	Atomic	A	tomic	Coordinate	es (Angstroms)
2.462 68.9 C	Number	Numbo	er	Туре	X Y	Z
1.483 Sn	1	17	0	1.133513	-1.895937	0.818684
	2	17	0	1.133382	1.896049	0.818619
	3	6	0	-2.341127	-1.217645	-0.432390
	4	1	0	-1.839189	-2.104118	-0.038704
	5	1	0	-3.403398	-1.251262	-0.153611
	6	1	0	-2.265430	-1.222143	-1.523765
	7	6	0	-1.775306	0.000411	1.595297
	8	1	0	-1.274369	0.887516	1.985809
	9	1	0	-2.826529	-0.000374	1.916399
	10	1	0	-1.272839	-0.885545	1.986460
	11	6	0	-2.341326	1.217133	-0.433119
	12	1	0	-3 403049	1 251893	-0 152398
	12	1	Õ	-1 838107	2 102022	-0.041762
	13	1	0	-1.03010/	1.210700	-0.041/02
	14	1	U	-2.26/692	1.219/98	-1.324033
	15	7	0	-1.693267	-0.000042	0.111983
	16	50	0	0.649056	-0.000014	-0.709011

Me ₃ SnCl – the product of Me ₃ SnSnCl ₃ *NMe ₃ decomposition						
	E = -6604.74002240 a.e.					
	Standard orientation:					
Sn						
2.421	Center Atomic Atomic Coordinates (Angstroms)					
	Number Number Type X Y Z					
0-00						
	1 6 0 -0.841047 2.011627 -0.585109					
	2 1 0 -1.932299 2.093930 -0.609345					
	3 1 0 -0.445934 2.738022 0.129684					
	4 1 0 -0.445463 2.241938 -1.577661					
	5 6 0 -0.843488 -0.498860 2.033817					
	6 1 0 -1.934807 -0.517204 2.116708					
	7 1 0 -0.450533 -1.481917 2.305639					
	8 1 0 -0.447246 0.244665 2.730141					
	9 6 0 -0.842191 -1.512370 -1.449140					
	10 1 0 -0.442895 -1.260310 -2.434922					
	11 1 0 -0.451610 -2.488096 -1.148849					
	12 1 0 -1.933481 -1.570425 -1.511753					
	13 17 0 2.160024 -0.000676 0.000755					
	14 50 0 -0.261516 0.000170 -0.000198					

Fig. S7 Interaction of O lone electron pairs with the Ge-O antibonding orbitals

