Supporting Information (SI)

A ferrocene-pyrene based '*turn-on*' chemodosimeter for Cr³⁺ -Application in Bioimaging

Mandeep Kaur,^a Paramjit Kaur,^{*a} Vikram Dhuna,^b Sukhdev Singh,^b Kamaljit Singh,^{*a}

^aDepartment of Chemistry, UGC-Centre of Advance Studies-I, ^bDepartment of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar- 143 005, India.

E-mail: paramjit19in@yahoo.co.in; kamljit19in@yahoo.co.in

Table of Contents

1.	Isolation of the hydrolytic by-products of the titration of 1 with Cr ³⁺ .	S1
2.	Characterization of compound 1 (¹ H, ¹³ C, mass, IR)	S1-S3
3.	Changes in the emission spectra of 1 with increasing $[Cr^{3+}]$.	S 3
4.	Selected data of electronic transitions in 1 by TD-DFT calculations and contour	S4
	surfaces of the corresponding orbitals.	
5.	Comparison of ¹ H NMR spetrum of 1, its hydrolytic products and 1+Cr ³⁺ .	S 5
6.	Changes in the ¹ H NMR spetra of 1 upon addition of Cr^{3+} , after 24 h.	S6
7.	Mass spectra of 1 with and without addition of Cr^{3+} .	S7
8.	Cartesian coordinates of the optimized structure of 1.	S8
9.	Complete reference no. 12	S9

Isolation of the hydrolytic by-products of the titration of 1 with Cr³⁺

A solution of **1** (3.5 ml, 5.0 x 10^{-6} M) in (THF:water, 1:99 ν/ν) was titrated with increasing concentration (from 2.85 x 10^{-6} M to 5.0 x 10^{-4} M) of an aqueous solution of Cr³⁺ [Cr(ClO₄)₃6H₂O). At the end of the titration, the solution was extracted with hexane (2 ml). Thin layer chromatography (TLC) revealed the presence of 1-ferrocenecarboxaldehyde upon comparison with authentic sample. Further, recording of the mass spectrum and ¹H NMR spectrum of the crude product showed the presence of 1-ferrocenecarboxaldehye and 1-aminopyrene, respectively (Fig S8-S9). Subsequently, the aqueous layer was extracted with ethyl acetate (2 ml). TLC analysis of the ethyl acetate layer revealed the presence of 1-aminopyrene upon comparison with authentic sample.

In order to isolate the by-products, to a solution of **1** (0.002 g) in THF:H₂O (1:99, ν/ν , 0.7 ml) an aqueous solution of Cr(ClO₄)₃.6H₂O (0.1 M, 48 µl) was added and the solution stirred for two hours. After extractive workup of the reaction, as described above, 1-ferrocenecarboxaldehyde and 1-aminopyrene was isolated in quantity enough for recording the spectroscopic data as well as TLC comparison with authentic samples.

Fig. S1 ¹H NMR spectra of **1** in CDCl₃.

Fig. S2 ¹³C NMR spectra of 1 in CDCl₃.

Fig. S3 Mass spectra of 1 (solid).

Fig. S4 IR (KBr) spectra of 1.

Fig. S5 Increase in the emission intensity at 442 nm of **1** (5 x 10^{-6} M, in THF) upon addition of increasing amount of Cr³⁺ (2.85 x 10^{-6} M - 5.0 x 10^{-4} M, in H₂O) in THF:H₂O. (The *v/v* ratio of THF and H₂O in the mixture was 1:99). Inset: Graph depicting 1 x 10^{-6} M concentration (detection limit) of Cr³⁺ to be the lowest to be detected by the chemodosimeter **1**.

λ[nm/ (eV)]	ſ	Composition of bands and CI ^b coefficients	
498 (2.49)	0.0129	$\text{H-2} \rightarrow \text{L+3, 0.42}$	
406 (3.05)	0.6992	$\mathrm{H} \rightarrow \mathrm{L}, 0.67; \mathrm{H} \rightarrow \mathrm{L}{+1}, 0.11$	
296 (4.18)	0.2721	$\text{H} 3 \rightarrow \text{L}, 0.47; \text{H} \rightarrow \text{L}\text{+-}4, 0.31$	
290 (4.28)	0.1043	$H \rightarrow L+4, 0.48$	
246 (5.04)	0.1534	$H-5 \rightarrow L+2, 0.48$	

Table S1. Selected data of electronic transitions in 1 by TD-DFT calculations using B3LYP/Gen method.

^af- oscillator strength, ^bCI- configurational intergration coefficient, H - HOMO, L - LUMO.

Fig. S6 Frontier molecular orbitals of 1 contributing to UV-visible absorption bands (isovalue=0.03).

Fig. S7 ¹H NMR spectra of (a) **1**, (b) **1**+Cr³⁺, (c) 1-aminopyrene and (c) 1-ferrocenecarboxaldehyde.

Fig. S8 Changes in the ¹H NMR spectrum of **1** (in CDCl₃) upon addition of Cr^{3+} (1 equiv., in CD₃CN) perchlorate salt, recorded after equilibration (24 h).

Fig. S9 Mass spectra of (a) **1** and (b) **1** upon addition of Cr^{3+} in THF:H₂O (1:99/ ν/ν).

Table S2: Cartesian coordinates of **1**.

SCF Done: E (I	RB3LYP) = -121	8.55825268 a.u.	after	0 cycles.	
Center	Atomic	Coordina	ttes (Angstroms)		
Number	Number	Х	Y	Z	
1	26	-4.020996	-0.253293	0.105144	
2	6	-1.388339	1.471496	-0.14879	
3	1	-1.262641	2.063628	0.770524	
4	6	-2.763211	1.261395	-0.579942	
5	6	-3.222745	0.462023	-1.681011	
6	1	-2.583800	-0.106271	-2.342006	
7	6	-4.642022	0.543843	-1.722785	
8	1	-5.286336	0.029774	-2.423948	
9	6	-5.076597	1.380011	-0.647087	
10	1	-6.103356	1.611341	-0.396419	
11	6	-3.923880	1.818463	0.062314	
12	1	-3.913803	2.451574	0.940369	
13	6	-2.979358	-1.487740	1.421653	
14	1	-1.939027	-1.350119	1.685885	
15	6	-3.467326	-2.246898	0.316436	
16	1	-2.862484	-2.788181	-0.398824	
17	6	-4.890966	-2.129179	0.295228	
18	1	-5.553958	-2.564518	-0.440829	
19	6	-5.281464	-1.296626	1.387472	
20	6	-4.099689	-0.898280	2.083113	
21	1	-4.058620	-0.244003	2.944113	
22	7	-0.381876	1.004909	-0.783636	
23	6	0.921758	1.312207	-0.373417	
24	6	1.910411	0.294418	-0.433535	
25	6	1.287113	2.607333	0.032643	
26	6	3.246133	0.597753	-0.031748	
27	6	1.604957	-1.039903	-0.866204	
28	6	2.592301	2.904086	0.405367	
29	1	0.537711	3.393512	0.018307	
30	6	4.246240	-0.422073	-0.055871	
31	6	3.591297	1.917654	0.394270	
32	6	2.561489	-2.010639	-0.890107	
33	1	0.589731	-1.250269	-1.184080	
34	1	2.850422	3.917189	0.704759	
35	6	3.912170	-1.743971	-0.481860	

S8

37 6 4.945805 2.189465 0.7848 38 1 2.314220 -3.014523 -1.22763 39 6 4.912039 -2.731560 -0.49410 40 6 6.550183 -1.143671 0.3158 41 6 5.898198 1.215753 0.7642	404
38 1 2.314220 -3.014523 -1.22763 39 6 4.912039 -2.731560 -0.49416 40 6 6.550183 -1.143671 0.3158 41 6 5.898198 1.215753 0.7642	355
39 6 4.912039 -2.731560 -0.49410 40 6 6.550183 -1.143671 0.3158 41 6 5.898198 1.215753 0.7642	56
40 6 6.550183 -1.143671 0.3158 41 6 5.898198 1.215753 0.7642	67
41 6 5.898198 1.215753 0.7642	341
	251
42 1 5.197172 3.198570 1.1031	130
43 6 6.214254 -2.431959 -0.09892	34
44 1 4.657278 -3.737741 -0.81822	29
45 1 7.569014 -0.917200 0.6208	379
46 1 6.919005 1.437201 1.0664	405
47 1 6.974675 -3.208214 -0.11484	49
48 1 -6.292221 -0.990989 1.6238	393

Fig. S10 Changes in the emission of **1** (5.0 x 10^{-6} M) upon pH titration with HCl (0.001 M) and NaOH (0.01 M) in THF:H₂O (1:99/ ν/ν) at 442 nm.

Complete Reference 12

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.