Supporting Information

FUNCTIONALIZED MESOPOROUS SOLIDS BASED ON MAGADIITE AND [AI]-MAGADIITE

Hipassia M. Moura and Heloise O. Pastore*

Institute of Chemistry, University of Campinas, 270 Monteiro Lobato St, 13083 861, Campinas/São Paulo, Brazil.

* Corresponding author. Phone: +55-19-35213095; E-mail: gpmmm@iqm.unicamp.br

Experimental details. Synthesis and characterization.

Table S1. Chemical analyses of CTA-magadiites and CTA-[A1]-magadiites.

Table S2. Interlayer space of modified magadiites.

Table S3. Unit cell and $Si_T/(Si_T + Si_O)$ ratios of the ²⁹Si sites on the final solids.

Table S4. Specific surface area (S_{BET}), pore volume (V) and pore diameter (D) of the HYB-magaX and HYB-[A1]-magaX.

Table S5. Results of CO₂ adsorption in modified magadiite and [A1]-magadiite.

Figure S1. X-ray diffractograms of (A): a) magadiite, b) CTA-maga28, c) CTA-maga61, d) CTA-maga88 and e) CTA-maga100.

(B): a) [A1]-magadiite, b) CTA-[A1]-maga39, b) HYB-[A1]-maga39, c) CTA-[A1]-maga63, d) CTA-[A1]-maga72 and e) CTA-

[Al]-maga99.

Figure S2. Position of CTA⁺ chain in relation to the lamella (magadiite lamella thickness = 1.12 nm).

Figure S3. FT-IR spectra of hybrid materials derivated from magadiite and [A1]-magadiites.

Figure S4. ¹³C SS-NMR spectra of hybrid materials derivated from magadiite and [Al]-magadiites.

Figure S5. Scanning Electronic Microscopy (SEM) of hybrid materials based on [A1]-magadiite.

Figure S6. Surface area () and pore volume () as a function of CTA/Na in magadiite (A) and [Al]-magadiite (B).

EXPERIMENTAL SECTION

Pillarization process. The pillaring process occurred by the method proposed by Zhu *et al.*¹ and used previously for magadiite.² A solution of hydrolyzed TEOS in ethanol was added to the organomodified-magadiite suspensions (1 wt.%) and stirred for 3h at room temperature. The mixture was transferred to a stainless steel autoclave lined with Teflon for the hydrothermal treatment for 66h at 100°C. The solids were calcined at 550 °C for 10h under O₂ atmosphere. The samples were named PILC-[A1]-magaX (where X corresponds to the CTA/Na molar percentage on the starting magadiite).

Grafting process. The grafting process was performed as described in the literature by Wang *et al.*³. Approximately 0.25g of CTA-magaX/CTA-[Al]-magaX was dried in an oven for 24h at 100°C and after added to 125 mL of dried N-dimetylacetamide (DMAC) and stirred for 4h under Ar atmosphere at room temperature. Subsequently, γ -aminopropyltriethoxysilane was added to this mixture and stirred for 48h at 70°C under reflux and inert atmosphere. The final solid was washed with DMAC and dried. The solids were labeled γ -magaX and γ -[Al]-magaX (where X corresponds to the CTA/Na molar percentage on the starting magadiite).

Characterization. Confirmation of the formation of desired materials was made by X-ray diffraction (XRD) in XRD7000 Shimadzu apparatus with Cu radiation ($K_{a1} = 1.5406$ Å). Slits of 5 mm were used for dispersion and convergence and 3° for exiting radiation. Measurements were obtained in the region from 1.4 to 55° (20). The basal spacing and distances were calculated by Bragg's equation ($n\lambda = 2dsin\theta$). Field Emission Scanning Electron Microscopy (FE SEM) data were obtained in a JEOL JSM6340. The samples were prepared over a carbon film and coated with gold:palladium (80:20%). For Trasmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED) images, the sample was dispersed in distilled water and applied to 400-mesh copper grid coated with parlodio/carbon. The imaging was performed at Zeiss Microscope Libra 120 with CCD Olympus i-TEM Cantega camera. The elemental analyses of carbon, hydrogen and nitrogen were obtained from CHNS/O Analyzer 2400 series II from Perkin Elmer. The Na and Al contents were determined by ICP-OES. The solids were calcined at 900 °C and dissolved in 3 mL of HF (Aldrich 48%), 3 mL of HNO₃ (Aldrich 65 wt.%) and three drops of HClO4 (Mallinckrodt, 70 wt.%) in a sand bath, at 200 °C. After nearly complete evaporation of acids, small amounts of boric acid were added to the complete the elimination of HF. Solutions of these samples were prepared in HNO₃ solution 1.0 wt.% and analysed in a Optmar 3000 DV Perkin Elmer equipment. The structural order at short distances was analyzed by Fouriertransformed infrared spectroscopy (FTIR) using KBr pellets (0.5 wt%) in a Nicolet 6700 spectrophotometer at a resolution of 4 cm⁻¹ and with accumulation of 32 scans. Solid-State Nuclear Magnetic Resonance was used to probe the nucleous at short distances. High Power Decoupling (HPDEC) NMR spectra were measured for ²⁷Al and ²⁹Si in a Bruker Avance400⁺ II. The samples were spun at 10kHz in a zirconia rotor. More than 1024 scans were obtained for proton-decoupled ²⁹Si NMR, with 60 s delay time and tetramethylsilane (TMS) as reference. For proton-decoupled ²⁷Al, more than 2000 scans were accumulated at 0.5 s

delay time and an aqueous acid solution of Al(NO₃)₃ was the reference at 0 ppm. For ¹³C-{¹H} CP MAS NMR spectra, adamantane (C₁₀H₁₆) was used as reference. ²⁹Si liquid state nuclear magnetic resonance was measured in a Bruker Avance500 where a 5 mm glass tube was used. The measurements were performed using a D₂O capillary, 7200 scans were accumulated at 30 s delay time. The N₂ adsorption/dessorption isotherms were obtained by nitrogen adsorption at cryogenic temperature in a NOVA 4200e equipament (Quantachrome Instruments). The samples were heated at 100°C under vacuum for 24h prior to the measurement. Surface areas were determined using the Brunauer-Emmett-Teller (BET) method and pore size distribution data were collected by the NLDFT method using cylindrical pores on silica. Temperature-programmed desorption (TPD) experiments were performed on a Quantachrome CHEMBET-3000 TPD/TPR instrument equipped with a TC detector. Approximately 100 mg of sorbent was placed in a U-shaped quartz reactor, heated to 150 °C at a rate of 10 °C min⁻¹ and held at this temperature for 3 h under He flow (30 mL min⁻¹) to eliminate water and adsorbed gases. Then, the temperature was reduced to 50 °C and CO₂ (5 vol. % in He) flow (20 mL min⁻¹) contacted the sorbent for 2 h (adsorption temperature and time were determined previously). After that, the sample was submitted to He flow (20 mL min⁻¹) for 1h and temperature decreased to 30 °C. The CO₂ desorption was carried out between 30-150 °C a rate 10 °C min⁻¹ and the CO₂ adsorption capacity was calculated on the basis of desorption by external calibration method.

	CTA ⁺ /Na ⁺ calculated	Water (%) ^a	C (%) ^b	N (%) ^b	CTA ⁺ /Na ⁺ _{final solid} ^b	Unit Cell
ta	0%	14.98	0.14	0.01	-	$Na_2Si_{14}O_{29}$ · 8.0H ₂ O
	25%	6.1	10.33	0.63	28%	Na _{1.44} CTA _{0.56} Si ₁₄ O ₂₉ · 4.0H ₂ O
agadii	50%	4.5	20.16	1.21	61%	$Na_{0.78}CTA_{1.22}Si_{14}O_{29}$ · 3.2H ₂ O
M	75%	3.5	25.16	1.56	88%	$Na_{0.24}CTA_{1.76}Si_{14}O_{29}$ · 2.7H ₂ O
	100%	3.4	30.58	1.85	108%	CTA2Si14O2 · 2.7H2O
	0%	17.0	0.11	0.01	-	Na2Al0.95Si13.05O29 · 10H2O
diita	25%	4.5	15.05	0.88	39%	Na _{1.77} CTA _{1.23} Al _{0.95} Si _{13.05} O ₂₉ · 3.4H ₂ O
[Al]-magao	50%	3.4	19.47	1.22	63%	Na _{1.17} CTA _{1.83} Al _{0.95} Si _{13.05} O ₂₉ · 2.7H ₂ O
	75%	3.5	20.85	1.29	72%	Na _{0.84} CTA _{2.16} Al _{0.95} Si _{13.05} O ₂₉ · 2.9H ₂ O
	100%	3.9	22.16	1.55	99%	CTA ₂ Al _{0.95} Si _{13.05} O ₂₉ ·· 3.0H ₂ O

Table S1. Chemical analysis of CTA-magadiites and CTA-[A1]-magadiites.

a) By TG and b) by chemical analyses (CHN)

Table	S2.	Interlayer	space	of m	odified	magadiites.

Sample	ample Peak position/ °20/		Peak position/°20/
	Distance/ nm		Distance/ nm
Magadiite	5.76/1.53	[Al]-magadiite	5.74/1.54
CTA-Maga28	2.80/3.15	CTA-[Al]-maga39	2.81/3.14
HYB-maga28	6.38/1.38	HYB-[A1]-maga39	6.24/1.42
HYB-maga61	6.28/1.41	HYB-[A1]-maga63	4.98/1.77
HYB-maga88	5.93/1.49	HYB-[A1]-maga72	5.48/1.61
HYB-maga100	5.69/1.55	HYB-[A1]-maga99	5.58/1.58

Table S3. Unit cell and $Si_T/(Si_T + Si_Q)$ ratios of the ²⁹ Si sites on the final solids.
--

	% Si (T) = $Si_T/(Si_T + Si_Q)$	Unit cell*
HYB-maga28	26.0	(Na ₂ O)(Si(CH ₂) ₃ NH ₂) _{72.5} (SiO ₂) _{206.5}
HYB-maga61	27.7	(Na ₂ O)(Si(CH ₂) ₃ NH ₂) _{225.5} (SiO ₂) _{588.5}
HYB-maga88	31.0	(Na ₂ O)(Si(CH ₂) ₃ NH ₂) _{148.5} (SiO ₂) _{330.5}
HYB-maga100	25.0	(Na ₂ O)(Si(CH ₂) ₃ NH ₂) _{74.9} (SiO ₂) _{224.8}
HYB-[Al]-maga39	21.2	H _{0.8} (Na ₂ O)(Al ₂ O ₃) _{1.4} (Si(CH ₂) ₃ NH ₂) _{48.8} (SiO ₂) _{181.2}
HYB-[Al]-maga63	25.5	H _{1.2} (Na ₂ O)(Al ₂ O ₃) _{1.6} (Si(CH ₂) ₃ NH ₂) _{36.5} (SiO ₂) _{106.5}
HYB-[Al]-maga72	25.8	H ₁₇ (Na ₂ O)(Al ₂ O ₃) _{9.5} (Si(CH ₂) ₃ NH ₂) _{236.3} (SiO ₂) _{679.7}
HYB-[Al]-maga99	30.8	$H_{52.6}(Na_2O)(Al_2O_3)_{27.3}(Si(CH_2)_3NH_2)_{932.9}(SiO_2)_{2096.2}$

*calculated by ICP-OES and $Si_T/(Si_T + Si_Q)$ ratio obtained by ²⁹Si-MAS-NMR.

$S_{\rm BET}$ (m ² /g)	V*(cm ³ /g)	D *(nm)
25	0.16	19.3
74	0.36	5.7
512	1.1	9.8
61	0.24	4.9
49	0.19	5.2
49	0.19	5.4
47	0.23	5.2
32	0.14	18.0
67	0.40	6.3
641	1.2	6.8
60	0.23	5.3
47	0.17	4.8
38	0.14	4.3
40	0.14	5.0
	S_{BET} (m²/g) 25 74 512 61 49 49 47 32 67 641 60 47 38 40	S_{BET} (m ² /g) V^* (cm ³ /g) 25 0.16 74 0.36 512 1.1 61 0.24 49 0.19 49 0.19 47 0.23 32 0.14 67 0.40 641 1.2 60 0.23 47 0.17 38 0.14 40 0.14

Table S4. Specific surface area (S_{BET}), pore volume (V) and pore diameter (D) of the HYB-magaX and HYB-[A1]-magaX.

*NLDFT

Table S5. Results of CO_2 adsorption in modified magadiite and [A1]-magadiite.

	-NH ₂ groups content ^a	CO ₂ adsorption ^b	Efficiency ^c	
	n _N (mmol)/g of solid	(mmol CO ₂ /g of solid)	$(n_{\rm CO2}/n_{\rm N})$	
γ-maga28	0.276	0.101	0.37	
HYB-maga28	0.220	0.131	0.60	
γ-[Al]-maga39	0.232	0.106	0.46	
HYB-[Al]-maga39	0.196	0.128	0.65	
Maximum adsorption ^d	-	-	0.50	

^a calculated by CHN; ^b measured by TPD;

 $^{\rm c}$ ratio between (CO_2 adsorption)/(-NH_2 groups content)

 d according to the stoichiometry (2 R-NH_2 + CO_2 \rightarrow R-NH_3^+ + R-NHCOO^)

Figure S1. X-ray diffractograms of (A): a) magadiite, b) CTA-maga28, c) CTA-maga61, d) CTA-maga88 and e) CTA-maga100. (B): a) [Al]-magadiite, b) CTA-[Al]-maga39, b) HYB-[Al]-maga39, c) CTA-[Al]-maga63, d) CTA-[Al]-maga72 and e) CTA-[Al]-maga99.

Figure S2. Inclination of CTA^+ chain in relation to the lamella (magadiite lamella thickness = 1.12 nm^{4,5}).

Figure S3. FT-IR spectra of hybrid materials derivated from magadiite (A): a) CTA-maga28; b) HYB-maga-28; c) HYBmaga61; d) HYB-maga88 and e) HYB-maga100. B) FT-IR spectra of hybrid materials derivated from [Al]-magadiites: a) CTA-[Al]-maga39; b) HYB-[Al]-maga39; c) HYB-[Al]-maga63; d) HYB-[Al]-maga72 and e) HYB-[Al]-maga99.

Figure S4. ¹³C-{¹H} CP MAS NMR spectra of hybrid materials derived from magadiite (A): a) HYB-maga-28; b) HYB-maga61; c) HYB-maga88 and d) HYB-maga100. B) ¹³C-{¹H} CP MAS NMR spectra of hybrid materials derived from [Al]-magadiites: a) HYB-[Al]-maga39; b) HYB-[Al]-maga63; c) HYB-[Al]-maga72 and d) HYB-[Al]-maga99. The signals not assigned are due to the presence of residual CTA⁺ groups not completely eliminated, as already observed in Figure 4.

HYB-[Al]-maga72

HYB-[Al]-maga63

HYB-[Al]-maga99

Figure S5. Scanning Electronic Microscopy (SEM) of hybrid materials based on [A1]-magadiite.

Figure S6. Surface area (\blacksquare) and pore volume (\square) as a function of CTA/Na in magadiite (A) and [A1]-magadiite (B). The lines are only guide for the eyes.

¹ H. Y. Zhu, Z. Ding, C. Q. Lu and G. Q. Lu. Appl. Clay Sci., 2002, 20, 165.

² H. M. Moura, F. A. Bonk and H. O. Pastore. Eur. J. Mineral., 2012, 24, 903.

³ S. F. Wang, M. L. Lin, Y. N. Shieh, Y. R. Wang and S. J. Wang. Ceram. Int., 2007, 33, 681.

⁴ J. M. S. Silva, G. P., J. Bendall, C. Bisio, L. Marchese and H. O. Pastore. *Phys. Chem. Chem. Phys.*, 2013, **15**, 13434.

⁵ J. S. Dailey and T. J. Pinnavaia, Chem. Mater., 1992, 4, 855.