Accurate Prediction of ¹⁹⁵Pt NMR Chemical Shifts for a Series of Pt(II) and Pt(IV) Antitumor Agents by a Non-Relativistic DFT Computational Protocol

Athanassios C. Tsipis* and Ioannis N. Karapetsas

Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina,

451 10 Ioannina, Greece

Electronic Supporting Information

Table of Contents

Complete list of reference 43.	S3
Table S1 Structural and ¹⁹⁵ Pt NMR parameters of the $[PtCl_6]^{2-}$ and $[PtCl_4]^{2-}$ reference compounds	5
calculated at various levels of theory.	S4
Table S2 The changes of the isotropic shielding tensor elements (σ^{iso}) observed along the diabatic	c
(unrelaxed) rotation around the Pt-N bond.	S 5
Table S3 Selected structural parameters of the optimized geometries of the carboxylato- cis-	-
bis(amine) Pt(II) anticancer agents.	S 6
Table S4 . Selected structural parameters for a series of diacetylbis(amine)platinum(II) complexes.	S7
Table S5 Selected structural parameters for octahedral Pt(IV) anticancer agents.	S 8
Table S6 Cartesian Coordinates and energies of antitumour agents (in Hartrees)	S9
Output file for NMR calculation of [PtCl ₄] ²⁻	S67
Output file for NMR calculation of [PtCl ₆] ²⁻	S88

List of authors in Ref. 43

Gaussian 09, Revision A.02, Frisch, M. J.; Schlegel, H. B.; Scusseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millan, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda. R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2009

Table S1. The structural and ¹⁹⁵Pt NMR parameters of the $[PtCl_6]^{2-}$ and $[PtCl_4]^{2-}$ reference compounds calculated at various levels of theory along with the percent deviations from the experimental data.

Eurotional	[]	$PtCl_6]^{2-}$			$[PtCl_4]^{2-}$	
Functional	Pt-Cl (Å)	σ (ppm)	Dev(%)	Pt-Cl (Å)	δ (ppm)	Dev(%)
SVWN	2.363	46.0	-103	2.370	521	-68
HSE2PBE	2.402	-1626	0	2.424	1254	-23
X3LYP	2.430	-2144	32	2.455	1605	-1
O3LYP	2.426	-1033	-37	2.450	1309	-20
M05-2X	2.402	-4941	204	2.438	6171	279
PW91PW91	2.428	-595	-63	2.439	631	-61
CAM-B3LYP	2.401	-2574	58	2.430	1772	9
B3PW91	2.409	-1592	-2	2.430	1430	-12
PBE0	2.396	-1611	-1	2.419	1684	3
mPW1PW91	2.400	-1689	4	2.423	1659	2
mPW3PBE	2.405	-1514	-7	2.425	1433	-12
PBEh1PBE	2.401	-1400	-14	2.424	1268	-22
M06-2X	2.408	-5584	243	2.456	6137	277
M06-L	2.429	-1000	-39	2.464	21	-99
M06	2.414	-2048	26	2.443	572	-65
B3LYP	2.435	-1756	8	2.459	1518	-7
BP86	2.435	-1051	-35	2.445	619	-62
HCTH407	2.445	-1191	-27	2.462	933	-43
tHCTH	2.428	-731	-55	2.440	515	-68
wB97XD	2.405	-2797	72	2.438	1563	-4
BMK	2.408	-3594	121	2.459	2592	59
VSXC	2.443	-1976	21	2.477	510	-69
BB95	2.434	-1074	-34	2.446	409	-75
TPSS	2.427	-426	-74	2.443	355	-78
LC-wPBE	2.374	-2716	67	2.438	2095	29
B97-2	2.411	-1678	3	2.435	1599	-2
SC	-	-2063	27		1782	9
Expt	2.316	-1628		2.315	1628	
aiMD	2.385 ± 0.021			2.346±0.026		
EXAFS	2.330			2.304		
ADF-COSMO	2.375			2.348		

Table S2. The changes of the isotropic shielding tensor elements (σ^{iso}) observed along the diabatic (unrelaxed) rotation around the Pt-N bond computed at the PBE0/SARC-ZORA(Pt) \cup 6-31+G(d)(E) level.

Compound	Torsional barrier	$\delta (^{195}\text{Pt})_{\text{max}}(\varphi^{\circ})$	$\delta (^{195}\text{Pt})_{\min}(\varphi^{\circ})$	$\Delta[\delta(^{195}\text{Pt})]$
cis-(CH ₃ NH ₂) ₂ PtCl ₂	1.2	-1041 (150)	-1097 (50)	56
cis-(C ₂ H ₅ NH ₂) ₂ PtCl ₂	3.6	-1099 (130)	-1155 (50)	56
<i>cis</i> -(<i>n</i> -C ₃ H ₇ NH ₂) ₂ PtCl ₂	7.8	-953 (100)	-1117 (300)	164
<i>cis</i> -(<i>n</i> -C ₄ H ₉ NH ₂) ₂ PtCl ₂	7.3	-943 (100)	-1117 (300)	174
$cis-(n-C_5H_{11}NH_2)_2PtCl_2$	7.6	-956 (100)	-1100 (320)	144
$cis-(n-C_6H_{13}NH_2)_2PtCl_2$	7.7	-987 (80)	-1149 (290)	162
$cis-(n-C_7H_{15}NH_2)_2PtCl_2$	7.8	-1010 (90)	-1171 (280)	161
$cis-(n-C_8H_{17}NH_2)_2PtCl_2$	7.4	-987 (80)	-1149 (290)	162
cis-(i-PrNH ₂) ₂ PtCl ₂	-	-1166 (140)	-1221 (0)	55
cis-(i-BuNH ₂) ₂ PtCl ₂	5.8	-1021 (120)	-1155 (0)	134
cis-(i-AmNH ₂) ₂ PtCl ₂	7.8	-973 (250)	-1125 (70)	152
<i>cis</i> -(<i>c</i> -C ₃ H ₅ NH ₂) ₂ PtCl ₂	12.4	-1224 (160)	-1280 (70)	56
<i>cis</i> -(<i>c</i> -C ₄ H ₇ NH ₂) ₂ PtCl ₂	-	-944 (120)	-1048 (10)	104
cis-(c-C ₅ H ₉ NH ₂) ₂ PtCl ₂	-	-1022 (190)	-1949 (130)	924
$cis-(c-C_6H_{11}NH_2)_2PtCl_2$	-	-1103 (70)	-1245 (0)	142
<i>cis</i> -(<i>c</i> -C ₇ H ₁₃ NH ₂) ₂ PtCl ₂	-	-1181 (30)	-1230 (0)	49
$cis-(c-C_8H_{15}NH_2)_2PtCl_2$	-	-1103 (30)	-1551 (80)	448
cis-(1-Adamantamine) ₂ PtCl ₂	-	-1195 (0)	-1902 (240)	707
cis-(C ₅ H ₅ N) ₂ PtCl ₂	5.7	-1387 (80)	-1668 (0)	281
cis-(C ₅ H ₁₀ NH) ₂ PtCl ₂	13.7	-937 (90)	-1216 (0)	279
cis-[(CH ₃) ₂ NH] ₂ PtCl ₂	9.3	-1043 (90)	-1298 (180)	255
cis-(c-C ₃ H ₅ NH ₂)(NH ₃)PtCl ₂	7.3	-1042 (110)	-1250 (0)	208
cis-(c-C ₄ H ₇ NH ₂)(NH ₃)PtCl ₂	-	-1098 (10)	-2107 (120)	1009
cis-(c-C ₅ H ₉ NH ₂)(NH ₃)PtCl ₂	16.9	-1190 (10)	-1332 (60)	142
$cis-(c-C_6H_{11}NH_2)(NH_3)PtCl_2$	-	-1256 (0)	-1808 (130)	552
cis-(Thiazole) ₂ PtCl ₂	7.1	-1402 (60)	-1889 (140)	487

Compound	$R_{ m Pt-O}$	$R_{ m Pt-N}$	<n-pt-n< th=""><th><o-pt-o< th=""><th>Solvent</th></o-pt-o<></th></n-pt-n<>	<o-pt-o< th=""><th>Solvent</th></o-pt-o<>	Solvent
Carboplatin ^a	2.077 (2.075) ^b	2.129 (2.120)	93.3 (91.3)	90.9 (90.4)	DMF
	2.082 (2.092)	2.121 (2.108)	91.7 (89.9)	90.2 (89.5)	water ^c
	<i>2.025</i> ^d	2.021	95.3	90.5	solid state
Oxaliplatin ^e	2.089 (2.082)	2.126(2.118)	80.6 (80.9)	80.7(80.9)	DMF
	2.102 (2.107)	2.113 (2.101)	80.8 (81.0)	80.3 (80.2)	water ^c
	2.021; 2.031	2.011; 2.028	83.8	82.8	solid state
cis-(NH ₃) ₂ Pt(OOCCH ₃) ₂	2.115 (2.110)	2.110 (2.100)	89.1 (88.3)	82.0(82.8)	DMF
	2.126 (2.120)	2.105 (2.097)	88.2 (87.9)	83.0 (81.1)	water ^c
cis-(NH ₃) ₂ Pt(OOCC ₆ H ₅) ₂	2.116 (2.112)	2.107 (2.097)	89.1 (88.1)	82.0 (82.8)	DMF
	(2.120)	(2.094)	(88.0)	(81.0)	water ^c
(C ₅ H ₁₀ NH) ₂ Pt(OOCCOO)	2.087; 2.102	2.148	95.1	81.1	DMF
	(2.087; 2.093)	(2.140)	(93.9)	(81.2)	DMF
	2.098	2.138; 2.155	94.7	80.9	water ^c
	(2.109; 2.120)	(2.125)	(92.6)	(80.2)	water
(1,4-DACH)Pt(OOCCOO)	2.085 (2.081)	2.139 (2.130)	97.8 (97.6)	81.6(81.6)	DMF
	2.099 (2.105)	2.127(2.117)	97.4 (97.4)	81.0 (80.8)	water ^c
(1,4-DACH)Pt(CBDCA) ^f	2.086 (2.084)	2.135 (2.127)	98.1 (98.1)	91.4 (90.9)	DMF
	2.095 (2.102)	2.124 (2.117)	98.0 (97.9)	90.7 (89.7)	water ^c
(1,4-DACH)Pt(OOCCH ₂ COO)	2.091 (2.087)	2.133 (2.126)	98.1 (98.0)	92.4 (91.6)	DMF
	2.099 (2.105)	2.123 (2.115)	98.0 (97.9)	91.2 (90.6)	water ^c

^a Carboplatin = cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II). ^b Figures in parentheses are the structural parameters calculated in solution employing the SMD model. ^c Employing Gaussian03 package for calculations in aqueous solution. ^d Figures in italics are the experimentally determined structural parameters using X-Ray crystallography. ^e Oxaliplatin = (DACH)(oxalato)platinum(II). ^f CBDCA = 1,1-cyclobutanedicarboxylate.

Table S4. Selected structural parameters (bond lengths in Å, bond angles in degrees) for a series of diacetylbis(amine)platinum(II) complexes calculated at the GIAO-PBE0/SARC-ZORA(Pt) \cup 6-31+G(d)(E) level in solution.

Compound]	Pt-C	Pt-N	<c-pt-c< th=""><th><n-pt-n< th=""><th>Solvent</th></n-pt-n<></th></c-pt-c<>	<n-pt-n< th=""><th>Solvent</th></n-pt-n<>	Solvent
Pt(OCMe) ₂ (H ₂ NEt) ₂	2.070	2.302	94.6	95.0	CHCl ₃
$Pt(OCMe)_2(H_2N^iPr)_2$	2.069; 2.071	2.310; 2.318	94.1	95.9	CHCl ₃
	1.976; 1.985	2.176	89.1	88.0	Solid state
Pt(OCMe) ₂ (H ₂ NCH ₂ Ph) ₂	2.071	2.301	94.8	95.1	CHCl ₃
	1.979	2.164	91.8	92.7	Solid state
Pt(OCMe) ₂ (H ₂ NCH ₂ CH ₂ Ph) ₂	2.070	2.302	94.8	94.6	CHCl ₃
Pt(OCMe) ₂ (H ₂ NCH ₂ CH=CH ₂)	2.070	2.304	94.9	94.9	CHCl ₃
$Pt(OCMe)_2(H_2NCy)_2$	2.070	2.325	93.7	95.7	CHCl ₃
Pt(OCMe) ₂ (HNMe ₂) ₂	2.059; 2.087	2.330; 2.334	91.8	91.5	CH_2Cl_2
Pt(OCMe) ₂ (HNEt ₂) ₂	2.060; 2.090	2.354; 2.355	91.3	91.0	CH_2Cl_2
Pt(OCMe) ₂ (H ₂ NCH ₂ CH ₂ NH ₂)	2.062; 2.071	2.299; 2.316	91.8	76.8	CHCl ₃
Pt(OCMe) ₂ (Me ₂ NCH ₂ CH ₂ NH ₂)	2.054; 2.082	2.308; 2.396	91.5	77.0	CHCl ₃
Pt(OCMe) ₂ (MeNHCH ₂ CH ₂ NHMe		2.314; 2.333	91.8	78.0	CHCl ₃
)	2.062; 2.073				
Pt(OCMe) ₂ (Me ₂ NCH ₂ CH ₂ NMe ₂)	2.073	2.347; 2.348	85.3	79.4	CH_2Cl_2

^a Figures in parentheses are the structural parameters calculated in solution employing the SMD model.

Compound]	Pt-O	Pt-Cl	Pt-N	<o-pt-o< th=""><th><cl-pt-cl< th=""><th><n-pt-n< th=""><th>Solvent</th></n-pt-n<></th></cl-pt-cl<></th></o-pt-o<>	<cl-pt-cl< th=""><th><n-pt-n< th=""><th>Solvent</th></n-pt-n<></th></cl-pt-cl<>	<n-pt-n< th=""><th>Solvent</th></n-pt-n<>	Solvent
cct-[Pt(NH ₃) ₂ Cl ₂ (OOCH) ₂]	$2.059(2.063)^{a}$	2.359 (2.367)	2.129 (2.116)	176.6 (175.8)	94.3 (95.1)	94.3 (93.1)	DMSO
cct-	```	2.360 (2.369)	2.125 (2.117)	170.7 (171.0)	91.4 (91.3)	97.2 (96.9)	DMSO
[Pt(NH ₃)(Cha)Cl ₂ (OOCCH ₃) ₂](Satraplatin)	2.063 (2.064)		· /	. ,	. ,		
	2.01; 2.06	2.308; 2.312	2.067; 2.073	174.7	90.39	94.3	Solid state
cct-[Pt(NH ₃) ₂ Cl ₂ (OOCCH ₃) ₂]	2.064	2.359; 2.385	2.100; 2.121	171.0	91.7	92.8	water
	(2.065; 2.067)	(2.369; 2.390)	(2.097; 2.109)	170.7	91.8	91.8	water
	2.030	2.318	2.049	176.7	91.23	90.7	Solid state
cct-[Pt(NH ₃) ₂ Cl ₂ (OOCCF ₃) ₂]	2.061 (2.061)	2.353 (2.363)	2.116 (2.110)	171.2 (170.7)	91.6 (91.7)	93.1 (92.3)	water
<i>cct</i> -[Pt(NH ₃) ₂ Cl ₂ (OOCCHCl ₂) ₂] (Mitaplatin)	2.052 (2.052)	2.356 (2.363)	2.117 (2.108)	173.8 (174.1)	94.4 (94.8)	93.3 (91.0)	DMSO
$Pt(en)Cl_2(OOCCH_3)_2$	2.063 (2.063)	2.366 (2.375)	2.099 (2.096)	171.4 (171.7)	92.2 (92.4)	82.3 (82.2)	DMSO
$Pt(en)Cl_2(OOCCF_3)_2$	2.061 (2.061)	2.360 (2.371)	2.114 (2.11)	171.7 (171.3)	91.9 (91.9)	82.2 (82.2)	water
$Pt(1,2-DACH)Cl_2(OOCCH_3)_2$	2.063 (2.063)	2.366 (2.375)	2.103 (2.100)	172.0 (172.2)	91.8 (91.7)	81.5 (81.4)	acetone
	2.036	2.331	2.01	167.9	94.1	84.0	Solid state
$Pt(1,4-DACH)(OOCCH_3)_2Cl_2$	2.064 (2.066)	2.376 (2.384)	2.133 (2.129)	168.1 (168.2)	97.8 (98.1)	97.0 (96.8)	acetone
	2.007; 2.010	2.315; 2.322	2.037; 2.067	174.2	91.9	97.4	Solid state
cct -{Pt(NH ₃) ₂ Cl ₂ [OOCNH(^t Bu)] ₂ }	2.055 (2.052)	2.371 (2.376)	2.107 (2.102)	173.9 (174.1)	95.3 (95.5)	91.7 (90.7)	DMSO
	2.0062; 2.0117	2.3145; 2.3326	2.037; 2.037	174.06	92.57	90.0	Solid state
<i>cct</i> -{Pt(NH ₃) ₂ Cl ₂ [OOCNH(<i>c</i> -pentyl)] ₂ }	2.050 (2.050)	2.362 (2.370)	2.104 (2.096)	171.3 (171.7)	94.8 (95.6)	93.1 (91.5)	DMSO
	1.9970; 2.0088	2.3170; 2.3324	2.0423; 2.038	174.22	91.99	90.02	Solid state
cct -{Pt(NH ₃) ₂ Cl ₂ [OOCNH(c -hexyl)] ₂ }	2.049 (2.050)	2.362 (2.370)	2.103 (2.096)	171.5 (171.5)	94.9 (95.2)	93.0 (91.2)	DMSO
	2.001; 2.026	2.3075; 2.3170	2.041; 2.042	174.17	91.48	93.17	Solid state
<i>cct</i> -[Pt(NH ₃) ₂ Cl ₂ (OOCNHPh) ₂]	2.056 (2.056)	2.374 (2.378)	2.105 (2.102)	173.8 (173.7)	93.4 (93.0)	90.1 (90.3)	DMSO
	1.993; 1.995	2.3202; 3.3272	1.993; 1.995	174.94	92.68	92.21	
$Pt(1,2-DACH)(OH)_2(oxalate)$	2.042 (2.044)	2.053 (2.056) ^b	2.085 (2.082)	174.5 (174.9)	$81.8(81.7)^{c}$	81.2 (81.2)	DMF
cct-[Pt(NH ₃) ₂ Cl ₂ (OH) ₂] (Oxoplatin)	2.046 (2.051)	2.367 (2.373)	2.104 (2.101)	172.2 (173.9)	92.1 (92.2)	92.5 (91.2)	water
	2.008	2.317	2.056	176.9	90.48	94.3	Solid state
cct-[Pt(iPrNH ₂) ₂ Cl ₂ (OH) ₂] (Iproplatin)	2.042 (2.047)	2.382 (2.388)	2.119 (2.113)	174.3 (176.8)	93.1 (93.3)	94.6 (92.5)	water
$Pt(hpip)Cl_2(OH)_2$	2.047 (2.053)	2.383 (2.390)	2.133 (2.131)	178.8 (179.2)	91.9 (91.6)	73.8 (73.7)	water
$Pt(mhpip)Cl_2(OH)_2$	2.047	2.387	2.122; 2.167	178.7	90.2	74.7	water
	(2.053)	(2.389; 2.395)	(2.121; 2.167)	(178.9)	(90.0)	(74.7)	water
Pt(dmhpip)Cl ₂ (OH) ₂	2.046; 2.049	2.389	2.163	178.7	87.3	75.5	water
	(2.053)	(2.397)	(2.163)	(170.3)	(87.4)	(75.5)	water
$Pt(1,4-DACH)(OH)_2Cl_2$	2.043 (2.048)	2.385 (2.389)	2.111 (2.122)	174.5 (176.9)	93.0 (92.5)	98.0 (97.9)	water
	2.043 (2.044)	2.385 (2.393)	2.111 (2.106)	174.6 (174.6)	93.0 (92.8)	98.1 (97.9)	DMF

Table S5. Selected structural parameters (bond lengths in Å, bond angles in degrees) for octahedral Pt(IV) anticancer agents calculated at the GIAO-PBE0/SARC-

 $ZORA(Pt) \cup 6-31+G(d)(E)$ level in solution.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2014

^a Figures in parentheses are the structural parameters calculated in solution employing the SMD model.

S10

Table S6 Cartesian Coordinates and energies of antitumour agents (in Hartrees)

cis-(NH₃)₂PtCl₂ (DMF)

```
Pt,0,0.,0.,0.149007493
```

Cl,0,0.0241350672,1.7574695274,-1.4847976822 N,0,-0.0134432292,-1.5398176075,1.6299584327 Cl,0,-0.0241350672,-1.7574695274,-1.4847976822 N,0,0.0134432292,1.5398176075,1.6299584327 H,0,-0.7980144193,-1.4701828722,2.2753765455 H,0,0.8403748279,-1.5529070235,2.1849257384 H,0,-0.0836484936,-2.4397386096,1.1559832194 H,0,0.7980144193,1.4701828722,2.2753765455 H,0,-0.8403748279,1.5529070235,2.1849257384 H,0,0.0836484936,2.4397386096,1.1559832194

Sum	of	electronic	and	zero-po	int Energies=	-18347	.973183
Sum	of	electronic	and	thermal	Energies=	-18347	.963814
Sum	of	electronic	and	thermal	Enthalpies=	-18347	.962870
Sum	of	electronic	and	thermal	Free Energies=	-18348	.008856

trans-(NH₃)₂PtCl₂ (DMF)

```
Pt,0,0.,0.,0.0032282075

Cl,0,0.,0.,-2.4118895839

N,0,0.,-2.1193018823,0.0025074443

Cl,0,0.,0.,2.4197401204

N,0,0.,2.1193018823,0.0025074443

H,0,-0.8203027348,-2.489958261,0.4784639321

H,0,0.8203027348,-2.489958261,0.4784639321

H,0,0.8203027348,2.489958261,0.4784639321

H,0,-0.8203027348,2.489958261,0.4784639321

H,0,-0.8203027348,2.489958261,0.4784639321

H,0,-0.8203027348,2.489958261,0.4784639321

H,0,0.,2.4817664948,-0.9497746859
```

Sum	of	electronic	and	zero-poi	int Energies=	-18347.978195
Sum	of	electronic	and	thermal	Energies=	-18347.968759
Sum	of	electronic	and	thermal	Enthalpies=	-18347.967814
Sum	of	electronic	and	thermal	Free Energies=	-18348.014041

cis-(CH₃NH₂)₂PtCl₂ (DMF)

Pt,0,0.0135955385,-0.0714416681,-0.0826305323 Cl,0,1.7506278262,-1.6561209182,0.4123910774 N,0,-1.5350473753,1.3368490363,-0.5534681968 Cl,0,-1.7586380662,-1.6406180441,0.3303314639 N,0,1.5932808033,1.3200567111,-0.4908417389

```
C, 0, -2.1886538017, 1.9559065683, 0.6141818771

C, 0, 2.0738492488, 2.0966820953, 0.6659107375

H, 0, -1.2004988019, 2.0636888947, -1.1840560491

H, 0, -2.225448796, 0.8043577002, -1.0818106

H, 0, 1.340496788, 1.9505160404, -1.2502707433

H, 0, 2.3555171541, 0.7450108476, -0.8489039207

H, 0, -2.9995864685, 2.6218536757, 0.2995223701

H, 0, -1.4518819192, 2.5279943261, 1.180923753

H, 0, -2.5922672338, 1.1655699747, 1.2489249748

H, 0, 2.9072460032, 2.7474470789, 0.3794719385

H, 0, 2.4048810374, 1.4034124103, 1.4408747265

H, 0, 1.259553063, 2.7080042708, 1.0588658623
```

Sum	of	electronic	and	zero-poi	int Energies=	-18426.423652
Sum	of	electronic	and	thermal	Energies=	-18426.411699
Sum	of	electronic	and	thermal	Enthalpies=	-18426.410755
Sum	of	electronic	and	thermal	Free Energies=	-18426.464117

cis-(C₂H₅NH₂)₂PtCl₂ (DMF)

Pt, 0, -0.0050357849, -0.410889578, -0.0957540112 Cl, 0, 1.8605855935, -1.8628665088, 0.3468591473 N, 0, -1.659875568, 0.8824331112, -0.5267301523 Cl, 0, -1.6509193255, -2.0882453673, 0.4144787615 N,0,1.4528545493,1.0787008323,-0.6025099441 C, 0, -2.0530143703, 1.8219809308, 0.5452859762 C, 0, -3.2886702047, 2.6320728536, 0.1888911986 C, 0, 2.0523827409, 1.8007721541, 0.5411601896 C, 0, 3.1087660918, 2.8051500154, 0.1112264966 H, 0, -1.5061956477, 1.3936189974, -1.3959214619 H, 0, -2.4323622938, 0.2409573167, -0.7129075963 H, 0, 1.0772061252, 1.7478777425, -1.2742243682 H, 0, 2.1862624784, 0.5698035409, -1.0971014404 H, 0, -1.2006573742, 2.4796817301, 0.7379524447 H, 0, -2.2213209216, 1.2268013987, 1.4470365209 H, 0, -3.5420362539, 3.3045760326, 1.0155240622 H, 0, -4.1517952937, 1.9816095489, 0.0069443462 H, 0, -3.1212668908, 3.2441740194, -0.7047932984 H, 0, 2.4767192703, 1.0431497095, 1.2052603387 H, 0, 1.2409789528, 2.2968215768, 1.0812853423 H, 0, 3.5285821948, 3.3007312226, 0.9933244249 H, 0, 2.6847856242, 3.5787212043, -0.5395680776 H, 0, 3. 9307563078, 2. 3146605163, -0. 4228438991

Sum	of	electronic	and	zero-poi	int Energies=	-18504.904499
Sum	of	electronic	and	thermal	Energies=	-18504.889934
Sum	of	electronic	and	thermal	Enthalpies=	-18504.888990
Sum	of	electronic	and	thermal	Free Energies=	-18504.948856

S11

$cis-(n-C_3H_7NH_2)_2PtCl_2$ (DMF)

Pt,0,0.0109824574,-0.5700456724,-0.1423066507 Cl, 0, 1.7423368218, -2.194995895, 0.2319216769 N, 0, -1.5248034695, 0.8796789573, -0.5168108876 Cl, 0, -1.7704029308, -2.1287790557, 0.2761579581 N, 0, 1.5896680224, 0.8230019486, -0.5566148633 C, 0, -2.1174760509, 1.4928575278, 0.6924595574 C, 0, -3.1980734421, 2.5260702287, 0.3911356924 C, 0, 2.0123261393, 1.6618047434, 0.5854460861 C, 0, 3.1587747404, 2.6139607043, 0.2602544308 C, 0, -4.4238554691, 1.9632635655, -0.320778291 C, 0, 4.4605658842, 1.9192495833, -0.1250641397 H, 0, -1.1942971388, 1.6099803877, -1.1477097411 H, 0, -2.2443576975, 0.3699395355, -1.0290543364 H, 0, 1.3579681426, 1.413252125, -1.355784265 H, 0, 2.3662448139, 0.2330715034, -0.8564361954 H, 0, -1.3029688014, 1.9522499521, 1.2599907385 H, 0, -2.5205579221, 0.6731628986, 1.295213286 H, 0, -3.4997041043, 2.9603151971, 1.3530739958 H, 0, -2.7638557384, 3.3489958002, -0.1936242985 H, 0, 2.2944520115, 0.9793191111, 1.3936186532 H, 0, 1.1368058919, 2.2260398514, 0.9194419736 H,0,3.3224009044,3.231213555,1.1530283941 H, 0, 2.8462853705, 3.3033086115, -0.5364089967 H, 0, -5.1954886244, 2.7333361727, -0.4266205582 H, 0, -4.8593533278, 1.1283191652, 0.2417730845 H, 0, -4.1898917955, 1.6039621558, -1.330176354 H, 0, 5.2645010082, 2.651620119, -0.2550019789 H, 0, 4.3737260828, 1.3685073386, -1.0693865013 H, 0, 4.7756692214, 1.2108068843, 0.6508965303

Sum	of	electronic	and	zero-po:	int Energies=	-18583.375561
Sum	of	electronic	and	thermal	Energies=	-18583.358428
Sum	of	electronic	and	thermal	Enthalpies=	-18583.357484
Sum	of	electronic	and	thermal	Free Energies=	-18583.424226

cis-(n-C₄H₉NH₂)₂PtCl₂ (DMF)

Pt,0,0.0170460375,-0.8777703454,-0.1138410822 Cl,0,1.7779847957,-2.4915408325,0.1887153956 N,0,-1.5436435988,0.556000187,-0.4245585678 Cl,0,-1.7346447325,-2.463428141,0.3275385176 N,0,1.573902687,0.5355947901,-0.5375885217 C,0,-2.0980330068,1.1836964494,0.795243195 C,0,-3.1786569836,2.2210848173,0.5083732236 C,0,1.9621893594,1.4140862473,0.5872927181 C,0,3.120988829,2.3525104668,0.2676860932

C, 0, -4.4375723876, 1.669337024, -0.157141276 C, 0, 4.45074089, 1.6540254532, -0.00768657 C, 0, 5.5984792136, 2.6426633063, -0.1815234815 C, 0, -5.5174097065, 2.7332390352, -0.3221807883 H, 0, -1.2448885491, 1.2791806672, -1.0792451618 H, 0, -2.2779892907, 0.0329472747, -0.9010302394 H, 0, 1.347660663, 1.0988607215, -1.357391997 H, 0, 2.3645359016, -0.0508772877, -0.80619225 H, 0, -1.2665059842, 1.6452081217, 1.3354265716 H, 0, -2.4883971066, 0.3731701252, 1.4183505416 H, 0, -3.4496494055, 2.6781783726, 1.4701704101 H, 0, -2.7554262359, 3.0299319875, -0.1056070519 H, 0, 2.2150182005, 0.7616445721, 1.4292308434 H, 0, 1.0777813108, 1.9913100393, 0.871817579 H, 0, 3.2382020131, 3.0216351108, 1.1314342585 H, 0, 2.8509852195, 2.9952357075, -0.5831494984 H, 0, -4.8284488734, 0.8354410258, 0.4428651072 H, 0, -4.196366905, 1.2543195066, -1.1458079693 H, 0, 4.3761585165, 1.033831626, -0.9118352913 H, 0, 4.6770373979, 0.9687507042, 0.8214652444 H, 0, 6.5428822966, 2.124966725, -0.3834176111 H, 0, 5.7349751115, 3.2492337657, 0.7222902545 H, 0, 5.4069702741, 3.3277534331, -1.0166310318 H, 0, -6.4106886774, 2.3226037173, -0.8060382707 H, 0, -5.1579628432, 3.5679682692, -0.9366852006 H, 0, -5.8198924305, 3.1416803571, 0.6499179077

```
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
                                                    -18661.829018
Sum of electronic and thermal Enthalpies=
                                                    -18661.828074
Sum of electronic and thermal Free Energies=
                                                    -18661.901114
```

$cis-(n-C_5H_{11}NH_2)_2PtCl_2$ (DMF)

Pt, 0, -0.0035809205, -0.728069298, 0.0788010637 Cl, 0, 1.7808322992, -2.2159918402, 0.7013118829 N, 0, -1.5794102136, 0.5977492879, -0.5212024537 Cl, 0, -1.7348636739, -2.3029893708, 0.6274289931 N, 0, 1.5345934969, 0.6709334555, -0.4445288009 C, 0, -2.084120938, 1.5017249991, 0.5346096387 C, 0, -3.2038066352, 2.4271921954, 0.065393197 C, 0, 2.0863904042, 1.451182719, 0.6848955461 C, 0, 3.1829012744, 2.429963668, 0.2730894781 C, 0, -4.4744377191, 1.7362645148, -0.433719382 C, 0, 4.4271128485, 1.8054448095, -0.3621267607 C, 0, -5.1792285769, 0.8641249242, 0.6032804515 C, 0, 5.1705081227, 0.8128910277, 0.5294504652 C, 0, 6.4658211759, 0.3183502986, -0.1052912847 C, 0, -6.4985776695, 0.2995547836, 0.0877111745

```
-18661.848804
```

H, 0, -1.3110322099, 1.138241818, -1.3437764306 H, 0, -2.3269339642, -0.0253778793, -0.8273339315 H, 0, 1.2268703664, 1.3041950283, -1.1828198879 H, 0, 2.2714087933, 0.098319323, -0.8560606604 H, 0, -1.2373104748, 2.0962111344, 0.8898942187 H, 0, -2.4080542685, 0.8689884382, 1.3657170412 H, 0, -3.4555250996, 3.0795267663, 0.91300174 H, 0, -2.8135344414, 3.0864500723, -0.7226038837 H, 0, 2.4487314092, 0.7283066873, 1.4207854234 H, 0, 1.2561056532, 1.9954480306, 1.1442943398 H, 0, 3.4761632206, 2.9800264773, 1.1779616775 H, 0, 2.7566902919, 3.1751659253, -0.4131799688 H, 0, -5.1701290798, 2.5168948296, -0.7715518588 H, 0, -4.2568043232, 1.1353268164, -1.3296874694 H, 0, 5.1116623059, 2.6213787052, -0.6326093814 H, 0, 4.1677919583, 1.3179596839, -1.3142843363 H, 0, -5.3607232758, 1.4584066054, 1.5104508648 H, 0, -4.5283089813, 0.0327065504, 0.9069634407 H, 0, 4.52874723, -0.0502205461, 0.7541517752 H, 0, 5.3909579076, 1.2907257593, 1.4949655729 H, 0, 6.9823711933, -0.3977988417, 0.5439741484 H, 0, 7.1533309607, 1.1511332522, -0.2995550325 H, 0, 6.2702010962, -0.1805725867, -1.0628750887 H, 0, -6.9875465568, -0.3283242871, 0.8412977927 H, 0, -6.3412664309, -0.3152327294, -0.8074933129 H, 0, -7.1943155554, 1.1044477924, -0.1806220014

cis-(*n*-C₆H₁₃NH₂)₂PtCl₂ (DMF)

```
Pt, 0, 0.0408302748, -1.3383101321, -0.1553895198
Cl, 0, 1.6898612901, -3.0934304696, -0.1094202968
N, 0, -1.4193868234, 0.23365767, -0.2213013268
Cl, 0, -1.8285588954, -2.8531655191, -0.0497250237
N, 0, 1.7028144618, 0.0046334834, -0.3166110678
C, 0, -1.9858836188, 0.6403443805, 1.0835966138
C, 0, -3.0278161112, 1.7488595254, 0.9721838344
C,0,1.9568648793,0.9298281858,0.8075406632
C, 0, 3.1898119312, 1.8049712181, 0.6039948804
C, 0, -4.2928244865, 1.3576650398, 0.2116664702
C, 0, 4.5078821386, 1.0324270213, 0.5737423885
C, 0, 5.7493515424, 1.9249757953, 0.5296746877
C, 0, -5.3402908364, 2.4676058885, 0.1939594071
C, 0, 5.901304346, 2.7422510772, -0.7516878779
C, 0, -6.6077907831, 2.0901931367, -0.5674845795
C, 0, 7.1998895608, 3.5408712974, -0.7868413484
C, 0, -7.6459943717, 3.2065218841, -0.5864884659
H, 0, -1.0579736528, 1.0525160638, -0.7109988587
H, 0, -2.1621461876, -0.1399686446, -0.8116828967
H, 0, 1.6322969862, 0.529511478, -1.1889188215
H, 0, 2.4964361585, -0.6270150594, -0.432661644
```

H, 0, -1.1544134157, 0.9629456124, 1.7170516346 H, 0, -2.4170833175, -0.2580941357, 1.5355885564 H, 0, -3.2969990813, 2.0440632837, 1.9956564216 H, 0, -2.5694707084, 2.6349825896, 0.5086032198 H, 0, 2.0563763031, 0.3206419635, 1.7117507256 H, 0, 1.0687043511, 1.5570036097, 0.9278255372 H, 0, 3.2147415249, 2.5282526683, 1.4310628775 H, 0, 3.0618163606, 2.3926103877, -0.3152908746 H, 0, -4.724932084, 0.4545020166, 0.6677246306 H, 0, -4.0485842366, 1.0932955249, -0.8279063567 H, 0, 4.535110617, 0.3558001927, -0.2932922212 H, 0, 4.5603984858, 0.3931903086, 1.4667132967 H, 0, 6.6396119841, 1.2911129358, 0.6493931333 H, 0, 5.7388092028, 2.6040420621, 1.3957986592 H, 0, -4.903150282, 3.372266841, -0.2550551387 H, 0, -5.6036185293, 2.7349843533, 1.2283757024 H, 0, 5.0523246548, 3.4300188424, -0.8626049786 H, 0, 5.8632428679, 2.0639500848, -1.6167410925 H, 0, -7.045495897, 1.1882789478, -0.1160811895 H, 0, -6.3420856453, 1.8181213857, -1.599164481 H, 0, 7.2911491744, 4.1188959026, -1.7138391881 H, 0, 8.0725075483, 2.8790534246, -0.7181982258 H, 0, 7.2522907633, 4.2460028812, 0.0523739993 H, 0, -8.5452108935, 2.9091575339, -1.1385444016 H, 0, -7.2453755131, 4.1101533919, -1.0630713622 H, 0, -7.9537000369, 3.4774110702, 0.4313658985

```
Sum of electronic and zero-point Energies=-18818.794830Sum of electronic and thermal Energies=-18818.769603Sum of electronic and thermal Enthalpies=-18818.768659Sum of electronic and thermal Free Energies=-18818.856269
```

cis-(*n*-C₇H₁₃NH₂)₂PtCl₂ (DMF)

Pt, 0, 0.0723507946, -1.5931578893, -0.2352041571 Cl, 0, 1.7171058072, -3.3525193293, -0.228321609 N, 0, -1.3848753521, -0.0194036926, -0.2760777579 Cl, 0, -1.8016383339, -3.1058957995, -0.2641839043 N, 0, 1.743971872, -0.2486578409, -0.236250595 C, 0, -1.9904392553, 0.3298449373, 1.0279696971 C, 0, -3.0232215497, 1.4486338328, 0.9360060619 C, 0, 1.9024973943, 0.6591897833, 0.9188265768 C, 0, 3.1602211073, 1.5196583598, 0.8444538812 C, 0, -4.2667133639, 1.1007673202, 0.121057158 C, 0, 4.4651248334, 0.7294113723, 0.9311854399 C, 0, 5.717238751, 1.6051677697, 1.0054346391 C, 0, -5.3037960365, 2.2211603366, 0.1157410284 C, 0, 5.9951943562, 2.4244312691, -0.2530255643 C, 0, -6.5492398692, 1.8750451799, -0.6971435184 C, 0, 7.3060433468, 3.2033770558, -0.1828818611

S15

C, 0, 7.584533193, 4.0171558984, -1.4417785452 C, 0, -7.5695666252, 3.0090214829, -0.8090235823 C, 0, -8.204751594, 3.4143686212, 0.517970812 H, 0, -1.0100791023, 0.819570978, -0.7193446628 H, 0, -2.1094986639, -0.3667941969, -0.9038718148 H, 0, 1.7506170863, 0.2885690232, -1.1038521795 H, 0, 2.5427908865, -0.8818961354, -0.2936230718 H, 0, -1.1780001978, 0.6178248765, 1.7015404661 H, 0, -2.4395066656, -0.586150628, 1.4238953036 H, 0, -3.321486745, 1.69903841, 1.9633418887 H, 0, -2.5465588307, 2.3518306943, 0.5269955671 H, 0, 1.9081724782, 0.0384502286, 1.8206611394 H, 0, 1.0157706546, 1.2983071375, 0.9627796479 Н, 0, 3.1151264143, 2.233752937, 1.6786219891 H, 0, 3.1282688963, 2.1186937176, -0.0757962248 H, 0, -4.7206747034, 0.1842994101, 0.5266681531 H, 0, -3.9919848483, 0.8753541334, -0.920098702 H, 0, 4.5629133681, 0.0560515292, 0.0666748603 H, 0, 4.4268923747, 0.0858669366, 1.8218133122 H, 0, 6.5836388332, 0.9579438333, 1.2027040319 H, 0, 5.636134609, 2.28017469, 1.8708472005 H, 0, -4.8470049858, 3.1355199639, -0.2930720273 H, 0, -5.5823781962, 2.4531295727, 1.1530728408 H, 0, 5.1724683251, 3.1306262847, -0.4348245461 H, 0, 6.020817555, 1.7512527222, -1.1240058604 H, 0, -7.036499108, 0.9922389252, -0.2555811094 H, 0, -6.2381387992, 1.5780914064, -1.7093707468 H, 0, 8.1342491092, 2.5014935187, -0.0081055499 H, 0, 7.282643916, 3.8721510557, 0.6897022526 H, 0, 8.5310330223, 4.5651195297, -1.3656225415 H, 0, 6.7882749925, 4.7502843704, -1.6227174555 H, 0, 7.6446336193, 3.3688687054, -2.325186723 H, 0, -8.3621581141, 2.7000006308, -1.5041591681 H, 0, -7.0863877899, 3.8844675853, -1.2671748299 H, 0, -8.974770355, 4.1804473952, 0.3687483855 H, 0, -7.4664359416, 3.8236491249, 1.2171340202 H, 0, -8.6815025699, 2.5532839664, 1.004179955

Sum	of	electronic	and	zero-poi	int Energies=	-18897.266770)
Sum	of	electronic	and	thermal	Energies=	-18897.238936	5
Sum	of	electronic	and	thermal	Enthalpies=	-18897.237992	2
Sum	of	electronic	and	thermal	Free Energies=	-18897.332531	L

cis-(*n*-C₈H₁₃NH₂)₂PtCl₂ (DMF)

Pt,0,0.0414849561,-1.905184476,-0.1452147945 Cl,0,1.6472871556,-3.6989338898,-0.0956339065 N,0,-1.3725799351,-0.2948021443,-0.2276756118 Cl,0,-1.862154104,-3.3804064291,-0.1401301905 N,0,1.7340810348,-0.5915359991,-0.1700221884

C, 0, -2.0014318698, 0.0743865568, 1.0598646263 C, 0, -3.0234411101, 1.199789869, 0.9351843772 C, 0, 2.0277055562, 0.1370472177, 1.0824557426 C, 0, 3.284977398, 0.9976180419, 1.0072968203 C, 0, -4.2556538249, 0.8492707432, 0.1043439387 C, 0, 4.5749830813, 0.2039349352, 0.802751599 C, 0, 5.8473907804, 1.0374745648, 0.9632749465 C, 0, -5.2899398067, 1.9718652959, 0.0755866692 C, 0, 6.0230492916, 2.1403841049, -0.0783494454 C, 0, -6.5224196554, 1.6233284578, -0.7562122738 C, 0, 7.3486563477, 2.8839959464, 0.05948604 C, 0, 7.5375339682, 3.9912254163, -0.973642538 C, 0, -7.5386455559, 2.7577672771, -0.8944005145 C, 0, -8.2152851313, 3.172897186, 0.4104182576 C, 0, -9.2828488197, 4.242224716, 0.2042749433 C, 0, 8.8655813838, 4.7255448918, -0.8256395097 H, 0, -0.9626820006, 0.5332682591, -0.6604624346 H, 0, -2.090019336, -0.6218564818, -0.8743054804 H, 0, 1.6646425633, 0.0651733684, -0.9476632518 H, 0, 2.5102533714, -1.214834738, -0.3958371697 H, 0, -1.199667826, 0.3635369445, 1.7455011807 H, 0, -2.466196028, -0.8330702498, 1.4571590466 H, 0, -3.3373133572, 1.4655966127, 1.9539837732 H, 0, -2.5335429428, 2.0940901052, 0.5225120799 H, 0, 2.1183317512, -0.6120813943, 1.8756127014 H, 0, 1.159339129, 0.7604235587, 1.3144994782 H, 0, 3.3497916907, 1.5551233698, 1.9523688144 H, 0, 3.1602344374, 1.748382243, 0.2151445432 H, 0, -4.7180379842, -0.062954638, 0.510023203 H, 0, -3.9663260921, 0.6152715805, -0.9309975388 H, 0, 4.5835078468, -0.2592911931, -0.1950900328 H, 0, 4.5993270303, -0.6221394416, 1.5281941937 H, 0, 6.7144295531, 0.3634779283, 0.9136073174 H, 0, 5.8622256341, 1.4815509279, 1.970106444 H, 0, -4.8247865011, 2.8830898058, -0.3307616063 H, 0, -5.5848865523, 2.2101483084, 1.1069069996 H, 0, 5.1992331486, 2.8644506824, -0.0035178845 H, 0, 5.9559550559, 1.7003981775, -1.0853968074 H, 0, -7.0183660041, 0.7434832619, -0.3186390873 H, 0, -6.1937433138, 1.319551853, -1.7607960068 H, 0, 8.1786987315, 2.1658297404, -0.0238656468 H, 0, 7.4192220871, 3.3161322347, 1.069485713 H, 0, 6.7092266406, 4.709578066, -0.8894034206 H, 0, 7.4667605732, 3.5597377633, -1.9826290633 H, 0, -8.3159909364, 2.4498175677, -1.6090681254 H, 0, -7.0450654794, 3.6348409049, -1.3409050008 H, 0, -7.464673037, 3.544635325, 1.1206148267 H, 0, -8.6683155773, 2.2862246442, 0.8780848395 H, 0, -9.7560919889, 4.5270109169, 1.1513469097 H, 0, -10.0723288398, 3.8874639722, -0.4704783164 H,0,-8.8521081105,5.1491687812,-0.238952022 H,0,8.9757567152,5.5144175978,-1.5790067264 H,0,9.7123226223,4.0365524954,-0.9377585829 H,0,8.9492781849,5.1943808573,0.1630431534

Sum	of	electronic	and	zero-poi	int Energies=	-18975.74	0169
Sum	of	electronic	and	thermal	Energies=	-18975.70	9613
Sum	of	electronic	and	thermal	Enthalpies=	-18975.70	8669
Sum	of	electronic	and	thermal	Free Energies=	-18975.81	0309

cis-(i-PrNH₂)₂PtCl₂ (DMF)

Pt,0,0.0792977142,-0.6131741059,-0.2121089049	
Cl,0,2.111402409,-1.867778905,0.1235614013	
N, 0, -1.7620203809, 0.4212168544, -0.6369352438	
Cl,0,-1.3309231243,-2.475465454,0.3820080078	
N,0,1.3577142836,1.0167817935,-0.7899963422	
C,0,-2.1836101288,1.6428656687,0.0945562012	
C,0,-3.5346374732,2.1222573327,-0.4260187532	
C,0,1.6001423034,2.1543543017,0.1374893315	
C,0,2.5048175522,3.1859022809,-0.5283100435	
C,0,-2.2111386629,1.3729834166,1.5893543322	
C,0,2.1769996956,1.6538616866,1.4510425349	
H,O,-1.7795895225,O.6092658163,-1.6396747361	
H, O, -2.4574767329, -0.313160163, -0.483909193	
H,O,1.0366245734,1.3799689414,-1.6877411413	
H,0,2.248782278,0.5528626961,-0.9806833005	
H,0,-1.4319774165,2.4081750768,-0.1256745604	
H,O,-3.8195180864,3.0547413261,0.0727414068	
H, 0, -4.3163063202, 1.3785990779, -0.2271195408	
H,0,-3.5042720209,2.312900518,-1.504761628	
H,O,O.6225710131,2.6095515976,O.326247672	
H,0,2.6373674115,4.0493957009,0.1322112384	
H,0,2.0791116406,3.5464337576,-1.471805049	
H,0,3.495272604,2.7617910104,-0.7345510451	
H,O,-2.5059683173,2.2807698882,2.1255256513	
H,O,-1.2297026844,1.0576168555,1.958354943	
H,O,-2.9377422817,O.5872654063,1.8305784998	
H,0,2.3329108343,2.4997210041,2.1285249958	
H,0,3.1443724699,1.1619439912,1.2934576878	
H,0,1.5053403703,0.9396786284,1.9384955779	

Sum	of	electronic	and	zero-poi	int Energies=	-18583.383253
Sum	of	electronic	and	thermal	Energies=	-18583.366367
Sum	of	electronic	and	thermal	Enthalpies=	-18583.365423
Sum	of	electronic	and	thermal	Free Energies=	-18583.429810

cis-(i-BuNH₂)₂PtCl₂ (DMF)

Pt,0,0.2736139685,-1.0304253171,0.0181643866

Cl, 0, -0.1378934574, -2.4096707007, 1.9482564126 N, 0, 0.6759746924, 0.1852080911, -1.708033326 Cl, 0, -0.2645176768, -2.7716009822, -1.5536078849 N, 0, 0.7616638225, 0.5170842419, 1.4222471395 C, 0, 0.0088727454, 1.4942960725, -1.8361555892 C, 0, 0.3472795402, 2.2416000959, -3.1293785529 C, 0, -0.3686700903, 1.3256834423, 1.9226138414 C, 0, 0.0460344603, 2.4259481242, 2.9032170702 C, 0, -0.2396511847, 3.6504254462, -3.0610322812 C, 0, -0.1484181088, 1.5045848809, -4.3721007896 C, 0, 0.6903643588, 1.8622760545, 4.168594504 C, 0, -1.174608485, 3.2783574156, 3.245212027 H, 0, 1.6868457377, 0.3026669388, -1.7832418205 H, 0, 0.4070121672, -0.4272596786, -2.4791180464 H, 0, 1.4906430102, 1.1262048222, 1.0499827635 H, 0, 1.1874594573, 0.0116161634, 2.199044575 H, 0, 0.3058162373, 2.1027837938, -0.9763613306 H, 0, -1.0710854249, 1.3233265542, -1.7656060986 H, 0, 1.4431559428, 2.3300800251, -3.1868114228 H, 0, -1.0730355527, 0.6334644625, 2.3964512453 H, 0, -0.8712450224, 1.7662352772, 1.0559256819 H, 0, 0.7797313298, 3.0696162723, 2.3933808267 H, 0, 0.018201522, 4.2198952655, -3.9608774629 H, 0, 0.1386814088, 4.2026756857, -2.1926408818 H, 0, -1.334415508, 3.6153688983, -2.9898725062 H, 0, 0.0954709785, 2.0731554588, -5.2765893164 H, 0, -1.2384308982, 1.3777851816, -4.3397823654 H, 0, 0.305307681, 0.5129081715, -4.4857668886 H, 0, 0.9473598772, 2.6722349881, 4.8605696851 H, 0, 1.6163735719, 1.3123712843, 3.9619450514 H, 0, 0.0006536654, 1.1840588481, 4.6879372775 H, 0, -0.8959593252, 4.1006950593, 3.9136139569 H, 0, -1.940460484, 2.6787605201, 3.7538372182 H, 0, -1.6269939568, 3.7130251426, 2.3460019013

Sum of electronic and zero-point Energies=-18661.852628Sum of electronic and thermal Energies=-18661.832563Sum of electronic and thermal Enthalpies=-18661.831619Sum of electronic and thermal Free Energies=-18661.905548

cis-(i-AmNH₂)₂PtCl₂ (DMF)

Pt,0,-0.0001167031,-1.2206449195,0.0005233767 Cl,0,1.4719114019,-2.8561120178,-0.980155094 Cl,0,-1.4721995426,-2.8556299674,0.9819323985 N,0,-1.3051215709,0.2503105411,0.8435628858 C,0,-2.2725277389,0.8645954415,-0.0909336231 C,0,-3.212664745,1.8424541306,0.6038487433 C,0,-4.1561035731,2.5823741269,-0.3528728558 C,0,-5.1089401027,1.634281738,-1.0805893789

C, 0, -4.9413028063, 3.6483305639, 0.4096033325 N, 0, 1.3049778328, 0.2499024696, -0.8430914047 C, 0, 2.272415676, 0.8644664347, 0.0911868132 C, 0, 3.2126378453, 1.8420002159, -0.6039369104 C, 0, 4.1561627442, 2.5821420823, 0.3525296683 C, 0, 5.1089826302, 1.6342062989, 1.0804732289 C, 0, 4.9413871074, 3.6478356117, -0.4102874174 H, 0, -0.7731904309, 0.9781046272, 1.3210522511 H, 0, -1.8133667241, -0.251413494, 1.5736177046 H, 0, -2.8207148177, 0.0446309786, -0.56176438 H, 0, -1.703655157, 1.374745983, -0.875385232 H, 0, -2.6102129451, 2.5832539544, 1.1491116938 H, 0, -3.808881073, 1.3038470894, 1.3557951441 H, 0, -3.5360606494, 3.092243037, -1.1065503798 H, 0, -5.7946000922, 2.196369904, -1.7257629696 H, 0, -5.7160723529, 1.0680930994, -0.3614574118 H, 0, -4.5798255977, 0.9141136994, -1.7146650802 H, 0, -5.5920328229, 4.2157604949, -0.2663004749 H, 0, -4.2719957787, 4.3587086626, 0.9097724915 H, 0, -5.5773329813, 3.1878963158, 1.1772877173 H, 0, 0.7730990108, 0.9775538929, -1.320855775 H, 0, 1.8131919435, -0.2521324777, -1.5729538707 H, 0, 2.8205309795, 0.0446362654, 0.5623343826 H, 0, 1.7035619116, 1.3749505574, 0.8754351804 H, 0, 2.6102486304, 2.5826781574, -1.1494338914 H, 0, 3.8087914669, 1.3030884291, -1.3557149833 H, 0, 3.5361852485, 3.0922639162, 1.1060899248 H, 0, 5.7947000684, 2.196442425, 1.7254566519 H, 0, 5.7160540397, 1.0677835478, 0.3614742497 H, 0, 4.5798622579, 0.9142444414, 1.7147775773 H, 0, 5.5921869799, 4.2154149133, 0.265423698 H, 0, 4.2720974014, 4.3581146943, -0.9106202012 H, 0, 5.5773490292, 3.1871471355, -1.1778757803

Sum of electronic and zero-point Energies=-18740.325219Sum of electronic and thermal Energies=-18740.302596Sum of electronic and thermal Enthalpies=-18740.301652Sum of electronic and thermal Free Energies=-18740.382366

cis-(c-C₃H₅NH₂)₂PtCl₂ (DMF)

Pt,0,-0.439311421,-0.1515428788,-0.3069996775 Cl,0,-2.5444420046,0.8653627666,0.2738130361 Cl,0,-1.1555370129,-2.3717508645,0.3040347371 N,0,1.4337232866,-1.0563493014,-0.8468196099 N,0,0.1479663208,1.821803573,-0.9307649955 C,0,2.4762175923,-1.0340839394,0.1716486098 C,0,3.5953423249,-2.0342402265,0.1203875083 C,0,2.5290947276,-2.128345959,1.1840893396 C,0,1.17668069,2.5075875332,-0.161578322

```
C, 0, 1.1447911022, 4.0025877623, -0.022374065
C, 0, 0.8157006246, 3.1141072405, 1.1527713482
H, 0, 1.7908368021, -0.658095877, -1.7155444491
H,0,1.181789092,-2.022548042,-1.0614922665
H, 0, -0.7331426576, 2.3367306075, -0.8724197567
H, 0, 0.4037013572, 1.816088974, -1.9185430293
H, 0, 2.7125057467, -0.0271758879, 0.4987588834
H, 0, 4.5889492127, -1.6940586274, 0.398740767
H, 0, 3.573377757, -2.7737632389, -0.6768091306
H, 0, 1.796308641, -2.926062856, 1.0930831738
H, 0, 2.781162727, -1.8590882285, 2.2057123014
H, 0, 2.1482161831, 2.0351115744, -0.2608962471
H, 0, 0.3231117246, 4.5368559175, -0.4935402341
H, 0, 2.0947761874, 4.5298151086, -0.0322855734
H, 0, 1.5321813054, 3.0297662281, 1.9647828774
H, 0, -0.226334409, 3.0546151515, 1.4585787246
Sum of electronic and zero-point Energies=
                                                       -18580.948330
Sum of electronic and thermal Energies=
                                                       -18580.933423
Sum of electronic and thermal Enthalpies=
                                                       -18580.932479
```

cis-(c-C₄H₇NH₂)₂PtCl₂ (DMF)

```
Pt, 0, 0.562327, -0.095312, -0.181494
Cl, 0, 2.638111, -0.342386, 1.010181
Cl, 0, 0.599999, 2.302899, -0.067288
N, 0, 0.588759, -2.227229, -0.399996
H, 0, 1.331717, -2.596155, 0.192889
N, 0, -1.279363, 0.088365, -1.265313
C, 0, -2.569563, -0.005467, -0.555195
C, 0, -2.844817, 0.951901, 0.611153
C, 0, -3.633192, -0.19964, 1.274677
C, 0, -2.835475, -1.185145, 0.390559
H, 0, -0.274863, -2.699266, -0.139698
H, 0, 0.805942, -2.498436, -1.3576
H, 0, -1.271854, -0.583902, -2.033039
H, 0, -1.218322, 1.0089, -1.704237
H, 0, -3.372469, 0.065878, -1.300324
H, 0, -3.362446, 1.889936, 0.388773
H, 0, -1.920964, 1.165761, 1.159335
H, 0, -4.693836, -0.17774, 1.003958
H, 0, -3.543406, -0.312768, 2.358323
H, 0, -1.91546, -1.487221, 0.903212
H, 0, -3.340882, -2.067213, -0.014259
Sum of electronic and zero-point Energies=
```

Sum of electronic and thermal Energies=

Sum of electronic and thermal Enthalpies=

Sum of electronic and thermal Free Energies=

```
-18503.703292
-18503.690493
-18503.689549
```

-18580.993809

-18503.744596

cis-(c-C₅H₉NH₂)₂PtCl₂ (DMF)

Pt, 0, 0.1709003451, -0.7760393602, -0.0033932008 Cl, 0, 1. 6916814574, -2. 3407744917, 1. 0131367484 Cl, 0, -0.8636393819, -2.4513293143, -1.3896925517 N, 0, 1.0678625742, 0.7300468006, 1.2533637266 C, 0, 2.1203045361, 1.6321814134, 0.7320172521 C, 0, 3.3942437726, 0.9119099222, 0.3025269516 C, 0, 4.1471998249, 1.9677225817, -0.5282288385 C, 0, 3.0746579375, 2.9911919079, -0.9879347593 C, 0, 1.732553012, 2.4140794094, -0.5172362211 N, 0, -1.247944497, 0.5829129422, -0.8688025886 C, 0, -2.6041628899, 0.5529331036, -0.2861119477 C, 0, -2.6544169203, 1.0554870798, 1.1543698818 C, 0, -4.143452134, 1.3721178453, 1.3943924726 C, 0, -4.784505617, 1.5053483723, -0.0126974165 C, 0, -3.6163171574, 1.4470769844, -1.0041369452 H, 0, 0.3233430299, 1.2900184153, 1.6682107036 H, 0, 1.4599179888, 0.1853305527, 2.0232206699 H, 0, 2.3624817483, 2.3443154072, 1.5354192311 H, 0, 3.1185427838, 0.0498234401, -0.3177441947 H, 0, 3.9755987379, 0.5346812374, 1.1508211304 H, 0, 4.661914345, 1.5052389912, -1.3763553343 H, 0, 4.9149760804, 2.4626327367, 0.07631496 H, 0, 3.0865223828, 3.1546399674, -2.0699858806 H, 0, 3.2498587908, 3.9648151383, -0.5161177353 H, 0, 0.9737054043, 3.1842033883, -0.3354166975 H, 0, 1.3443959787, 1.7099014076, -1.2662794485 H, 0, -0.8994988751, 1.5420804585, -0.869182014 H, 0, -1.2996320988, 0.3016052049, -1.848598113 H, 0, -2.9351906016, -0.4907352428, -0.3327411341 H, 0, -2.0591733473, 1.9771611549, 1.2304414142 H, 0, -2.2438200787, 0.332246748, 1.8670916589 H, 0, -4.2581436321, 2.2881016542, 1.9825038738 H, 0, -4.6246461549, 0.5692074844, 1.9626436459 H, 0, -5.3676023077, 2.4251193553, -0.1226341327 H, 0, -5.4689857688, 0.6693316571, -0.197189211 H, 0, -3.9010248835, 1.0639244871, -1.9901825317 H, 0, -3.1787483843, 2.4460451598, -1.1446944241

Sum of electronic and zero-point Energies=-18737.965051Sum of electronic and thermal Energies=-18737.946168Sum of electronic and thermal Enthalpies=-18737.945224Sum of electronic and thermal Free Energies=-18738.016971

$cis-(c-C_6H_{11}NH_2)_2PtCl_2$ (DMF)

Pt, 0, 0.0014290173, -0.8465874666, 0.0388014144 Cl, 0, -0.9854568515, -2.4967181752, 1.4936811422 Cl, 0, 1.0001798883, -2.5218399486, -1.3800220242 N, 0, 0.9980663648, 0.601989496, -1.2170668088 C, 0, 2.2898059659, 1.2108790074, -0.7972418959 C, 0, 3.3685009417, 0.1509293048, -0.613352687 C, 0, 4.6994022846, 0.7981515603, -0.2276244602 C, 0, 4.5590261384, 1.6648358117, 1.0226715373 C, 0, 3.4568976488, 2.7079877568, 0.8483355629 C, 0, 2.1300951523, 2.0511515763, 0.4640280513 N, 0, -1.0194949728, 0.6168649195, 1.2564799857 C, 0, -2.3067616357, 1.2130123403, 0.8066223155 C, 0, -3.3657871049, 0.1420189365, 0.5768856419 C, 0, -4.696087753, 0.7812485152, 0.1755722862 C, 0, -4.539849779, 1.6739943434, -1.0545413677 C, 0, -3.45001479, 2.7230301523, -0.8407353613 C, 0, -2.1261006432, 2.0700437872, -0.4401138078 H, 0, 0.347839317, 1.3488340796, -1.4594172213 H, 0, 1.1545130628, 0.0791363502, -2.08056778 H, 0, 2.5979494259, 1.8787474392, -1.6171786134 H, 0, 3.4798878496, -0.4371265121, -1.5328279552 H, 0, 3.0496270009, -0.5471505053, 0.1730758026 H, 0, 5.0592318294, 1.4182992478, -1.0620712136 H, 0, 5.4538268802, 0.0177351783, -0.0701572297 H, 0, 5.5125002274, 2.1564030378, 1.2533457446 H, 0, 4.317303467, 1.0235332479, 1.8833685221 H, 0, 3.7488669956, 3.42336871, 0.0655879456 H, 0, 3.3255363859, 3.2874942772, 1.7701299615 H, 0, 1.8056362415, 1.3972803907, 1.2870325877 H, 0, 1.3596902057, 2.8204340189, 0.3170001979 H, 0, -0.3771933919, 1.369494722, 1.5026874988 H, 0, -1.1894881829, 0.1024120223, 2.1224986225 H, 0, -2.647298141, 1.8666992222, 1.6252032547 H, 0, -3.4887041533, -0.4685467034, 1.4799043832 H, 0, -3.0201542516, -0.5325915756, -0.2193653131 H, 0, -5.0806330609, 1.3803296792, 1.0143430132 H, 0, -5.437841928, -0.0042557512, -0.0134878191 H, 0, -5.4931104267, 2.1621169549, -1.2932664624 H, 0, -4.2770100415, 1.0517961829, -1.9230236757 H, 0, -3.7629917042, 3.4229037628, -0.0521535381 H, 0, -3.3052153263, 3.3187592204, -1.7500570329 H, 0, -1.7841120688, 1.4276631925, -1.2649520602 H, 0, -1.3624890839, 2.8410731933, -0.2698461442 Sum of electronic and zero-point Energies=

Sum of electronic and zero-point Energies=-18816.453851Sum of electronic and thermal Energies=-18816.433900Sum of electronic and thermal Enthalpies=-18816.432956Sum of electronic and thermal Free Energies=-18816.504414

cis-(*c*-C₇H₁₃NH₂)₂PtCl₂ (DMF)

Pt, 0, 0.0071273171, -1.8116694884, -1.5500201953 Cl, 0, -1.8104931626, -3.4002954374, -1.5741439201 Cl, 0, 1.6922683398, -3.5249747778, -1.3589556419 N, 0, -1.5051067224, -0.3045281931, -1.802892262 C, 0, -1.8893755895, 0.6017866316, -0.6860142442 C, 0, -2.5094719114, -0.1998915794, 0.4553527172 C, 0, -2.5950549186, 0.5573743374, 1.8087925476 C, 0, -2.140511498, 2.0205143076, 1.8027470431 C, 0, -3.0554443167, 2.9756999816, 1.0199740421 C, 0, -3.7343285717, 2.3549770728, -0.1999678109 C, 0, -2.8104189438, 1.7091823594, -1.232464948 N, 0, 1.6564393038, -0.437349029, -1.7144065838 C, 0, 1.9374799756, 0.5828952467, -0.6728767011 C, 0, 3.2031503684, 1.3666683083, -1.0388006244 C, 0, 3.4142900506, 2.684180439, -0.2433425721 C, 0, 2.3872425954, 2.9848810299, 0.8529489633 C, 0, 2.4552352827, 2.0467390445, 2.0679508753 C, 0, 2.8584707579, 0.6092173231, 1.7426266842 C, 0, 2.0115581355, -0.1107694302, 0.6944507879 H, 0, -2.326077014, -0.8431030076, -2.0892324589 H, 0, -1.2515954974, 0.2609968526, -2.6138273965 H, 0, -0.9530430146, 1.0463444827, -0.340532997 H, 0, -1.9156524922, -1.1106099125, 0.590706835 H, 0, -3.5074640352, -0.5364398626, 0.1427943445 H, 0, -1.9832869885, 0.0212167533, 2.5443319793 H, 0, -3.6245402053, 0.5087090767, 2.1869718332 H, 0, -1.1137454505, 2.0833181622, 1.4203546627 H, 0, -2.0770250546, 2.3645487222, 2.8432308569 H, 0, -2.4815538091, 3.8625514091, 0.7176978402 H, 0, -3.8489676845, 3.3395920098, 1.6869121254 H, 0, -4.3265019361, 3.1266679656, -0.7088679032 H, 0, -4.4593356051, 1.6037162218, 0.1404595578 H, 0, -3.4450271427, 1.2702071029, -2.0165465601 H, 0, -2.1949511171, 2.4748555703, -1.7248339604 H, 0, 2.4574879819, -1.0693308707, -1.7869327024 H, 0, 1.5820340781, 0.0202623533, -2.6234237428 H, 0, 1.0861876344, 1.2684651397, -0.7022552284 H, 0, 3.1544680823, 1.6043288462, -2.1092628548 H, 0, 4.0695707321, 0.7025851427, -0.9175749318 H, 0, 3.4056591007, 3.5216955179, -0.9509439641 H, 0, 4.4173367846, 2.681104757, 0.2027501204 H, 0, 1.3778586598, 2.973652086, 0.4221873461 H, 0, 2.5399148042, 4.017203856, 1.1933518786 H, 0, 1.4870763095, 2.0546270564, 2.5875866775 H, 0, 3.1887758538, 2.4408142962, 2.7846613177 H, 0, 2.8331558495, 0.0158568219, 2.6657815892 H, 0, 3.9072475281, 0.5996723001, 1.4165392078 H, 0, 2.4397985862, -1.1116509872, 0.5444922663

H, 0, 0.9918354697, -0.2722282489, 1.0691730548

Sum	of	electronic	and	zero-po:	int Energies=	-18894.	.896674
Sum	of	electronic	and	thermal	Energies=	-18894.	.873918
Sum	of	electronic	and	thermal	Enthalpies=	-18894.	.872974
Sum	of	electronic	and	thermal	Free Energies=	-18894.	.951421

cis-(c-C₈H₁₅NH₂)₂PtCl₂ (DMF)

Pt, 0, -0.0182286947, -1.6674934458, -0.1848944942 Cl,0,1.7642820714,-3.1100963323,0.5622208006 Cl, 0, -1.7023293345, -3.1367169757, 0.7149036578 N, 0, 1.5239216501, -0.4442231843, -1.0607027063 C, 0, 2.5224478175, 0.2227265605, -0.1699605699 C, 0, 3.6839913846, 0.7102220564, -1.0443306638 C, 0, 4.9241110054, 1.2755247394, -0.3278489019 C, 0, 4.7352515228, 2.1930432684, 0.8848007694 C, 0, 3.991885268, 3.5240664514, 0.6763709846 C, 0, 2.7816406563, 3.541333758, -0.2633707136 C, 0, 1.5672507017, 2.674352387, 0.1099466543 C, 0, 1.8157893012, 1.2770606398, 0.6910832495 N, 0, -1.596769897, -0.4383995167, -1.0078207473 C, 0, -2.7202083101, 0.0404691136, -0.1501600658 C, 0, -2.145347465, 0.8947853781, 0.9820969213 C, 0, -3.1338653088, 1.622676608, 1.9012085093 C, 0, -4.1070204011, 2.6511071758, 1.3048396425 C, 0, -3.5637849169, 3.6665700824, 0.293610842 C, 0, -2.9015510772, 3.146886091, -0.992596713 C, 0, -3.5744185218, 1.9911281106, -1.7448972355 C, 0, -3.8260437266, 0.6593692551, -1.0162948056 H, 0, 2.0200775718, -1.1027317577, -1.6625903457 H, 0, 1.1326020915, 0.251225597, -1.697809874 H, 0, 2.880020045, -0.5731682517, 0.4918036966 H, 0, 3.2932414641, 1.431545535, -1.770114767 H, 0, 4.0282372653, -0.1455566593, -1.6426389326 H, 0, 5.5292001765, 1.7930757232, -1.0855691151 H, 0, 5.5341799615, 0.4266492506, 0.0098369855 H, 0, 5.7395863688, 2.4343425038, 1.2598866684 H, 0, 4.2714474264, 1.617763358, 1.6928119691 H, 0, 4.7071264259, 4.25651705, 0.2761825396 H, 0, 3.6947800317, 3.9090430203, 1.6629949601 H, 0, 3.1235625674, 3.3041842075, -1.2762754202 H, 0, 2.4290007452, 4.5804168539, -0.3241298919 H, 0, 0.9075714738, 2.6118143523, -0.7687286759 H, 0, 0.9821991371, 3.2127288895, 0.8687644784 H, 0, 2.3637574131, 1.3811248586, 1.6305437967 H, 0, 0.8460096017, 0.851100356, 0.9796539567 H, 0, -1.1884209282, 0.3639553415, -1.487809749 H, 0, -1.9853644801, -1.0237633838, -1.7484527214 H, 0, -3.1414250881, -0.867649754, 0.2934321174

```
H, 0, -1.4305786684, 1.6180242744, 0.5770410729
H, 0, -1.5497511498, 0.2218607343, 1.6132648598
H, 0, -2.5208488334, 2.129171769, 2.6595713736
H, 0, -3.7254320319, 0.8767483404, 2.4514186885
H, 0, -4.5192650729, 3.2225983914, 2.1484581571
H, 0, -4.9729974486, 2.1441880033, 0.8677042712
H, 0, -2.8427412952, 4.3275276608, 0.7967737093
H, 0, -4.4082507975, 4.3112542638, 0.0105720345
H, 0, -1.8558563733, 2.8899182758, -0.7947299328
H, 0, -2.8473788558, 3.9918068575, -1.693510171
H, 0, -2.9690032893, 1.7966619294, -2.6420160756
H, 0, -4.5477930464, 2.3313554168, -2.1262181186
H, 0, -4.7134624935, 0.736543467, -0.3830949248
H, 0, -4.0969516397, -0.0864336957, -1.7784910344
Sum of electronic and zero-point Energies=
                                                        -18973.351610
                                                                     7
```

Sum	of	electronic	and	thermal	Energies=	-18973.	.326737
Sum	of	electronic	and	thermal	Enthalpies=	-18973.	.325792
Sum	of	electronic	and	thermal	Free Energies=	-18973.	409468

cis-(1-Adamantamine)₂PtCl₂ (DMF)

```
Pt, 0, 0.0004283001, -1.3519135555, -0.0317041561
Cl, 0, 1.2251813823, -3.001425514, -1.295759451
Cl, 0, -1.2225392694, -3.0360395019, 1.1876650616
C, 0, 2.4078168578, 0.7282499528, -0.4569047167
C, 0, 2.0651324268, 1.4226794193, 0.8642966892
C, 0, 3.3290918914, 2.0610202574, 1.4589039262
C, 0, 2.9858898728, 1.7638321144, -1.436363086
C, 0, 4.7201467081, 0.2710385173, 0.3952160539
C, 0, 5.2926294849, 1.2992672271, -0.5881062732
C, 0, 4.2524140843, 2.3962047479, -0.8442293973
C, 0, 3.8977369333, 3.0909815465, 0.4756488828
C, 0, 4.3716853034, 0.9663475787, 1.7169586845
C, 0, 3.4532363925, -0.3599244801, -0.1986099135
N, 0, 1.187032725, 0.1261075812, -1.0656418472
C, 0, -2.4091665295, 0.7135016862, 0.4490718722
C, 0, -2.067222103, 1.4436728244, -0.8529102932
C, 0, -3.3319043189, 2.0962794984, -1.4302403845
C, 0, -2.9885316138, 1.7216484378, 1.4559993567
C, 0, -4.7208843253, 0.2766408814, -0.4152877905
C, 0, -5.2946623345, 1.2773336607, 0.595313531
C, 0, -4.2557793299, 2.3682184672, 0.8809888057
C, 0, -3.9018576268, 3.0987094688, -0.4196686213
C, 0, -4.3731617733, 1.0077035523, -1.7177923502
C, 0, -3.4532770126, -0.3685687429, 0.1614743369
N, 0, -1.1877194386, 0.0966152594, 1.0414980382
H, 0, 1.6600246599, 0.6849308731, 1.5708993124
H, 0, 1.3015826012, 2.1975283959, 0.6985035697
H, 0, 3.0650900461, 2.5542185402, 2.4033179153
```

S26

H,0,2.2348810209,2.5419481438,-1.6375729018 H, 0, 3.2170234377, 1.275545648, -2.3939542653 H, 0, 5.4584601576, -0.5209674153, 0.5758034213 H, 0, 5.5649551338, 0.8085949385, -1.5332093335 H, 0, 6.2106603781, 1.7414873058, -0.1770903692 H, 0, 4.6506728119, 3.1299471398, -1.557096629 H, 0, 4.7924176, 3.5628911748, 0.9044408008 H, 0, 3.1645205516, 3.890290023, 0.2972806099 H, 0, 3.9811962659, 0.2346398368, 2.4381810853 H, 0, 5.2754167655, 1.4069458498, 2.1600802085 H, 0, 3.6905640857, -0.8770723788, -1.1386852668 H, 0, 3.038906298, -1.1115128812, 0.485437619 H, 0, 1.467681996, -0.3677362832, -1.9159165958 H, 0, 0.5738106506, 0.8799616153, -1.3785575676 H, 0, -1.6611562628, 0.7257262253, -1.5790871166 H, 0, -1.3046334607, 2.2146984016, -0.6661950411 H, 0, -3.0684272194, 2.6150433716, -2.3610061418 H, 0, -2.238481427, 2.4949731766, 1.6781623196 H, 0, -3.2191463557, 1.2074877921, 2.4000768795 H, 0, -5.4582361944, -0.5110962732, -0.6172113621 H, 0, -5.566465924, 0.7610602187, 1.5268312003 H, 0, -6.2131905142, 1.7293808423, 0.1962728146 H, 0, -4.6549671564, 3.0820147441, 1.6133224144 H, 0, -4.797080565, 3.5809200278, -0.8356784073 H, 0, -3.1696135647, 3.8938054313, -0.2197763932 H, 0, -3.9817328129, 0.2961524162, -2.4584124466 H, 0, -5.2773899608, 1.4589864202, -2.1489867698 H, 0, -3.6900600292, -0.9110932022, 1.087278416 H, 0, -3.0379840772, -1.1010062856, -0.542472415 H, 0, -1.4678279368, -0.4201344844, 1.8782293674 H, 0, -0.5753166862, 0.8424887663, 1.3744921104

Sum	of	electronic	and	zero-poi	int Energies=	-19125.6	570385
Sum	of	electronic	and	thermal	Energies=	-19125.6	647245
Sum	of	electronic	and	thermal	Enthalpies=	-19125.6	546300
Sum	of	electronic	and	thermal	Free Energies=	-19125.7	724096

cis-(2-Adamantamine)₂PtCl₂ (DMF)

Pt,0,-1.2559580386,-1.5764646913,0. Cl,0,-1.0997072784,-3.2799363139,1.6967508337 Cl,0,-1.0997072784,-3.2799363139,-1.6967508337 C,0,0.6969758237,-0.1386596025,2.6496633857 C,0,-0.8259778539,-0.1335834463,2.8184229513 C,0,-1.2328348167,1.0041239592,3.7735485945 C,0,1.2064612761,1.2228225019,2.1564779032 C,0,0.9169551059,0.6534418652,5.0246551595 C,0,1.4289416586,2.0103856474,4.5242597117 C,0,0.8141453545,2.3211726107,3.1531650905 C,0,-0.7145261372,2.3620961242,3.2771478208

C, 0, -0.6117467177, 0.6999543217, 5.1454706043 C, 0, 1.31492632, -0.4389386679, 4.0234548778 N, 0, -1.5338865799, -0.0512386386, 1.515784098 C, 0, -1.2328348167, 1.0041239592, -3.7735485945 C, 0, -0.8259778539, -0.1335834463, -2.8184229513 C, 0, 0.6969758237, -0.1386596025, -2.6496633857 C, 0, -0.7145261372, 2.3620961242, -3.2771478208 C, 0, 0.9169551059, 0.6534418652, -5.0246551595 C, 0, 1.4289416586, 2.0103856474, -4.5242597117 C, 0, 0.8141453545, 2.3211726107, -3.1531650905 C, 0, 1.2064612761, 1.2228225019, -2.1564779032 C, 0, 1.31492632, -0.4389386679, -4.0234548778 C, 0, -0.6117467177, 0.6999543217, -5.1454706043 N, 0, -1.5338865799, -0.0512386386, -1.515784098 H, 0, 0.969551959, -0.9281954118, 1.9377318989 H, 0, -1.133168831, -1.090969098, 3.2496012093 H, 0, -2.328379994, 1.0287449332, 3.8639276588 H, 0, 0.8127777039, 1.4587888968, 1.1569207471 H, 0, 2.298920459, 1.1800756636, 2.0476404019 H, 0, 1.3554832384, 0.4299388628, 6.0064254797 H, 0, 2.5255644707, 1.9944535016, 4.4488662411 H, 0, 1.1659835275, 2.80089891, 5.2415115677 H, 0, 1.1802625824, 3.2923971705, 2.7944923655 H, 0, -1.0176532518, 3.1436508856, 3.9872611198 H, 0, -1.1673114051, 2.6385137514, 2.3132900037 H, 0, -0.9923953441, -0.2578415777, 5.5270979117 H, 0, -0.9124491866, 1.4754696373, 5.8633697108 H, 0, 2.4086363104, -0.4866514111, 3.9308236926 H, 0, 0.9781634722, -1.4229307274, 4.3788644831 H, 0, -1.3539988407, 0.8622654114, 1.1016337247 H, 0, -2.5385820113, -0.0656250304, 1.6973118514 H, 0, -2.328379994, 1.0287449332, -3.8639276588 H, 0, -1.133168831, -1.090969098, -3.2496012093 H, 0, 0.969551959, -0.9281954118, -1.9377318989 H, 0, -1.1673114051, 2.6385137514, -2.3132900037 H, 0, -1.0176532518, 3.1436508856, -3.9872611198 H, 0, 1.3554832384, 0.4299388628, -6.0064254797 H, 0, 1.1659835275, 2.80089891, -5.2415115677 H, 0, 2.5255644707, 1.9944535016, -4.4488662411 H, 0, 1.1802625824, 3.2923971705, -2.7944923655 H, 0, 2.298920459, 1.1800756636, -2.0476404019 H, 0, 0.8127777039, 1.4587888968, -1.1569207471 H, 0, 0.9781634722, -1.4229307274, -4.3788644831 H, 0, 2.4086363104, -0.4866514111, -3.9308236926 H, 0, -0.9124491866, 1.4754696373, -5.8633697108 H, 0, -0.9923953441, -0.2578415777, -5.5270979117 H, 0, -2.5385820113, -0.0656250304, -1.6973118514 H, 0, -1.3539988407, 0.8622654114, -1.1016337247

Sum	of	electronic	and	zero-po	int Energies=	-19125.	656382
Sum	of	electronic	and	thermal	Energies=	-19125.	634647
Sum	of	electronic	and	thermal	Enthalpies=	-19125.	633702
Sum	of	electronic	and	thermal	Free Energies=	-19125.	708455

cis-(C₅H₅N)₂PtCl₂ (DMF)

Pt, 0, -0.0000263399, -0.778880214, -0.0001334005 Cl, 0, 1.7402001681, -2.4352221088, -0.0161065204 Cl, 0, -1.7377650967, -2.4380385417, 0.0155636808 C, 0, 1.9037902877, 1.2685610847, -1.1691728509 C, 0, 2.0472187608, 1.1386368654, 1.1394752888 C, 0, 2.8870615155, 2.2481172662, -1.2153735785 H, 0, 1.428017789, 0.8984899092, -2.0711991773 C, 0, 3.0347841875, 2.1143107358, 1.1732764753 H, 0, 1.6841959946, 0.6658568525, 2.0458255805 C, 0, 3.4636966205, 2.6803686636, -0.0241911084 H, 0, 3.1887120593, 2.6572454349, -2.1739151879 H, 0, 3.4546933021, 2.4163938305, 2.1270160727 H, 0, 4.2353448148, 3.4445750025, -0.0291181705 C, 0, -1.9054049073, 1.2668676366, 1.1693528959 C, 0, -2.0486468232, 1.1375938638, -1.1393366064 C, 0, -2.8883552036, 2.2467385749, 1.2157177643 H, 0, -1.4298119723, 0.8964417425, 2.071328277 C, 0, -3.0358872683, 2.1136080117, -1.1729765192 H, 0, -1.6856725399, 0.6649692078, -2.0457876599 C, 0, -3.4646859036, 2.6795437873, 0.0245890128 H, 0, -3.1899452995, 2.6557317351, 2.1743366104 H, 0, -3.4555877338, 2.4161022672, -2.1266782191 H, 0, -4.2359948276, 3.4440928768, 0.0296308119 N, 0, 1.4938976618, 0.7279470971, -0.0117440992 N, 0, -1.495529246, 0.7264484185, 0.0118206279

Sum	of	electronic	and	zero-po	int Energies=	-18730.8	76636
Sum	of	electronic	and	thermal	Energies=	-18730.8	61054
Sum	of	electronic	and	thermal	Enthalpies=	-18730.8	60110
Sum	of	electronic	and	thermal	Free Energies=	-18730.9	24117

cis-(C₅H₁₀NH)₂PtCl₂ (DMF)

Pt,0,0.0003578056,-0.8505118134,0.0026703793 Cl,0,1.5276189055,-2.7214989742,-0.0166356847 Cl,0,-1.9318843714,-2.3057060445,-0.0122192111 C,0,1.9591446107,1.2042231975,-1.2137263344 C,0,2.0095413176,1.1438518301,1.2410921347 H,0,2.4782975985,-0.3761867807,-0.0342942023 C,0,3.335384944,1.8654930958,-1.2506600234 H,0,1.1742991398,1.9705703838,-1.2142987759 H,0,1.7987660109,0.5627720957,-2.0845895912 C,0,3.3857367588,1.8016685492,1.2548790126

H, 0, 1.2277472363, 1.9099357496, 1.3096993825 H, 0, 1.8816950787, 0.4607423309, 2.085199505 C, 0, 3.5909778912, 2.6735565708, 0.0187085863 H, 0, 3.392343125, 2.501407422, -2.1420060932 H, 0, 4.1037701712, 1.0891549955, -1.3626343918 H, 0, 3.4829801496, 2.3911253227, 2.1743606173 H, 0, 4.1582413013, 1.0205260176, 1.2948192514 H, 0, 4.606458666, 3.0863580738, 0.0079442311 H, 0, 2.900739681, 3.5287913249, 0.0547999456 C, 0, -2.0832522525, 1.0221928986, -1.2253691785 C, 0, -2.166830682, 0.9486696357, 1.226188189 H, 0, -0.6655007348, 1.6841780355, 0.0733786941 C, 0, -2.9052299532, 2.3064704576, -1.2404307553 H, 0, -2.7292709013, 0.1408730607, -1.2883064218 H, 0, -1.3828380875, 0.9858719204, -2.0652566922 C, 0, -2.989182, 2.2322239952, 1.2615339921 H, 0, -2.8148174336, 0.0676474148, 1.192232237 H, 0, -1.5254014825, 0.859833237, 2.1079535541 C, 0, -3.8109396025, 2.3940777723, -0.0147325351 H, 0, -3.4913648588, 2.3347514782, -2.1669421489 H, 0, -2.2287713423, 3.1733027065, -1.2672212583 H, 0, -3.6363751414, 2.206945781, 2.1465954018 H, 0, -2.3177434392, 3.094533104, 1.3849520826 H, 0, -4.3493935019, 3.3490931381, -0.0045474667 H, 0, -4.5698229201, 1.6000097496, -0.0637817423 N, 0, 1.7801172382, 0.3719079794, -0.0018951931 N, 0, -1.2961524754, 0.8827442886, 0.0254405035

```
Sum of electronic and zero-point Energies=-18737.964573Sum of electronic and thermal Energies=-18737.946878Sum of electronic and thermal Enthalpies=-18737.945934Sum of electronic and thermal Free Energies=-18738.012160
```

cis-[(CH₃)₂NH]₂PtCl₂ (DMF)

Pt,0,0.0173349391,-0.2624642343,0.0135128005 Cl,0,-1.9981310849,-1.5921815607,0.0296229372 N,0,1.8779093882,0.8412574494,-0.0039025011 Cl,0,1.4251852294,-2.2198122269,0.0465502235 N,0,-1.1892977071,1.5404296493,-0.0182626314 C,0,2.1043065903,1.6645777617,-1.2015726049 C,0,-2.0138513441,1.6539824259,-1.2354598962 C,0,2.1631302366,1.5767379427,1.2379293973 H,0,2.5197440198,0.047364269,-0.04757889 H,0,-0.5228407384,2.3103264366,-0.0361506507 C,0,-2.0057025028,1.701191012,1.1991023901 H,0,3.1339262632,2.0435652217,-1.2154960415 H,0,1.4252764238,2.521143525,-1.2027957927 H,0,1.9240353396,1.0635548237,-2.0946586096 H,0,-2.554784178,2.6088357441,-1.2392262109 H, 0, -2.7277006732, 0.8290384731, -1.2540041638 H, 0, -1.3724950397, 1.5947388833, -2.1171728017 H, 0, 2.054623141, 0.9032706496, 2.0899822006 H, 0, 1.4628672793, 2.4084432157, 1.3489676995 H, 0, 3.1832518754, 1.9809215389, 1.2171393492 H, 0, -1.3587009388, 1.6745740856, 2.0783781673 H, 0, -2.7200652694, 0.8782544988, 1.2540132897 H, 0, -2.5456212492, 2.6561504157, 1.1706823396

Sum of electronic and zero-point Energies=-18504.878880Sum of electronic and thermal Energies=-18504.864516Sum of electronic and thermal Enthalpies=-18504.863572Sum of electronic and thermal Free Energies=-18504.921231

cis-(CH₃NH₂)(NH₃)PtCl₂ (DMF)

Pt,0,0.4226597026,-0.0630237222,-0.0764701408 Cl,0,2.6410060882,-0.8620841921,0.3843837968 Cl,0,1.0476574423,2.2568212212,0.0393038988 N,0,-1.5553552065,0.6354104924,-0.4799733996 N,0,-0.1520580149,-2.1243760145,-0.2150061037 C,0,-2.6199645164,0.2229535659,0.4496213412 H,0,-2.7430118546,-0.8608487991,0.4094114665 H,0,-3.5711478179,0.6967372883,0.1839346385 H,0,-0.6748204556,-2.3500360846,-1.0590868163 H,0,-1.8093596889,0.3837949912,-1.4344139059 H,0,-1.4638085255,1.6518431074,-0.4729532816 H,0,0.6989568342,-2.6859474899,-0.2214965501 H,0,-0.7063417278,-2.4307118871,0.5824100627 H,0,-2.3420122593,0.513067523,1.4641349936

Sum	of	electronic	and	zero-po:	int Energies=	-18387.198481
Sum	of	electronic	and	thermal	Energies=	-18387.187964
Sum	of	electronic	and	thermal	Enthalpies=	-18387.187019
Sum	of	electronic	and	thermal	Free Energies=	-18387.236557

cis-(i-PrNH₂)(NH₃)PtCl₂ (DMF)

Pt,0,0.0361222309,-0.6685484985,-0.1666880424 Cl,0,2.1156715044,-1.7691726852,0.3328768245 N,0,-1.8055042142,0.3239268843,-0.6440095808 Cl,0,-1.311800577,-2.4775885036,0.668259544 N,0,1.2264259899,0.9401807509,-0.9389505001 C,0,-2.1614933248,1.5742113028,0.0783291306 C,0,-3.4577863648,2.1522281918,-0.478766707 H,0,1.1667380377,1.7830061222,-0.3706052696 C,0,-2.2527205458,1.305161104,1.5715725381 H,0,-1.8213318897,0.4967424994,-1.6494381935 H,0,-2.5246453284,-0.3821175869,-0.4709053661 H,0,2.2005282014,0.6389375699,-0.9316785667 H,0,0.9924621334,1.197534359,-1.8958711913 H,0,-1.3469582877,2.281482822,-0.1144071408 H,0,-3.6920338377,3.0964457222,0.0242966607 H,0,-4.2956691907,1.4637873405,-0.3140863032 H,0,-3.3798856457,2.3540871263,-1.5531609389 H,0,-2.510095697,2.2296236313,2.0984183687 H,0,-1.3043096053,0.9328943728,1.9728237427 H,0,-3.0326135891,0.5646774746,1.7884909913

Sum	of	electronic	and	zero-po	int Energies=	-18465.679089
Sum	of	electronic	and	thermal	Energies=	-18465.665983
Sum	of	electronic	and	thermal	Enthalpies=	-18465.665039
Sum	of	electronic	and	thermal	Free Energies=	-18465.720529

cis-(c-C₃H₅NH₂)(NH₃)PtCl₂ (DMF)

Pt, 0, 0.4176856116, -0.0692106692, -0.0827416769 Cl, 0, 2.6533133194, -0.8406429273, 0.3468386819 Cl, 0, 1.0005449396, 2.2575473402, 0.0848243931 N, 0, -1.5778225538, 0.6050392382, -0.4888016488 N, 0, -0.1314248997, -2.1328886712, -0.2429617796 C, 0, -2.6015087694, 0.2591844359, 0.488252183 C, 0, -3.4505816046, -0.9518047432, 0.2720137419 C, 0, -4.0527186637, 0.4266206249, 0.1485448495 H, 0, -0.4388522956, -2.3894261859, -1.1790165306 H, 0, -1.8521042631, 0.2916592827, -1.4202568343 H, 0, -1.4863975324, 1.6212321065, -0.5467640355 H, 0, 0.6865047224, -2.7004611937, -0.0235272779 H, 0, -0.8717188805, -2.3931372717, 0.4060712127 H, 0, -2.2867366929, 0.4890339605, 1.5010773767 H, 0, -3.6999401608, -1.5588640311, 1.1375786661 H, 0, -3.314660052, -1.5124224495, -0.6505138934 H, 0, -4.3002303916, 0.7736580452, -0.8519694792 H, 0, -4.7151248331, 0.7833631088, 0.9320730513

Sum	of	electronic	and	zero-poi	.nt Energie	s=	-18464.46	1991
Sum	of	electronic	and	thermal	Energies=		-18464.44	9789
Sum	of	electronic	and	thermal	Enthalpies	=	-18464.44	8845
Sum	of	electronic	and	thermal	Free Energ	ies=	-18464.50	3876

cis-(c-C₄H₇NH₂)(NH₃)PtCl₂ (DMF)

Pt,0,0.562327,-0.095312,-0.181494 Cl,0,2.638111,-0.342386,1.010181 Cl,0,0.599999,2.302899,-0.067288 N,0,0.588759,-2.227229,-0.399996 H,0,1.331717,-2.596155,0.192889 N,0,-1.279363,0.088365,-1.265313 C,0,-2.569563,-0.005467,-0.555195 C,0,-2.844817,0.951901,0.611153

```
C, 0, -3.633192, -0.19964, 1.274677

C, 0, -2.835475, -1.185145, 0.390559

H, 0, -0.274863, -2.699266, -0.139698

H, 0, 0.805942, -2.498436, -1.3576

H, 0, -1.271854, -0.583902, -2.033039

H, 0, -1.218322, 1.0089, -1.704237

H, 0, -3.372469, 0.065878, -1.300324

H, 0, -3.362446, 1.889936, 0.388773

H, 0, -1.920964, 1.165761, 1.159335

H, 0, -4.693836, -0.17774, 1.003958

H, 0, -3.543406, -0.312768, 2.358323

H, 0, -1.91546, -1.487221, 0.903212

H, 0, -3.340882, -2.067213, -0.014259
```

Sum	of	electronic	and	zero-poi	int Energies=	-18503.703292
Sum	of	electronic	and	thermal	Energies=	-18503.690493
Sum	of	electronic	and	thermal	Enthalpies=	-18503.689549
Sum	of	electronic	and	thermal	Free Energies=	-18503.744596

cis-(*c*-C₅H₉NH₂)(NH₃)PtCl₂ (DMF)

Pt, 0, -0.7784882628, -0.1107102904, -0.1444248984 Cl, 0, -0.943518291, 2.2834974016, -0.0367831202 Cl, 0, -2.8108632411, -0.4523691565, 1.0938453001 N, 0, 0.9948306546, 0.1837096927, -1.3318680473 C, 0, 2.3495672778, 0.1036880133, -0.7404247795 C, 0, 2.6135558082, 1.1514094733, 0.3376294839 C, 0, 3.8457021546, 0.6114354615, 1.0958279363 C, 0, 3.9798599946, -0.8769038863, 0.6841833906 C, 0, 2.667284976, -1.2068542482, -0.0324368703 N, 0, -0.6898889596, -2.2466558846, -0.3257713686 H, 0, -0.767612784, -2.5548509491, -1.2933022917 H, 0, 0.9426712452, -0.4485703217, -2.130442822 H, 0, 0.8628161031, 1.1212957405, -1.7147120089 H, 0, 3.0669245348, 0.2404387575, -1.5638044363 H, 0, 1.73721657, 1.1999342346, 0.9957273971 H, 0, 2.7670337751, 2.1533872018, -0.0769961936 H, 0, 3.7101565052, 0.7171759219, 2.1770452614 H, 0, 4.7502845053, 1.1704538897, 0.8344212042 H, 0, 4.1612004313, -1.5377425807, 1.5375381329 H, 0, 4.8209957955, -1.0067374379, -0.0074619596 H, 0, 2.7420470518, -2.066195279, -0.7085772818 H, 0, 1.8820748391, -1.4080433164, 0.709259192 H, 0, 0.1517761049, -2.6685994613, 0.0607771702 H, 0, -1.4867537888, -2.6323069763, 0.1802486096

Sum	of	electronic	and	zero-po:	int Energies=	-18542.967832
Sum	of	electronic	and	thermal	Energies=	-18542.953940
Sum	of	electronic	and	thermal	Enthalpies=	-18542.952996

cis-(c-C₆H₁₁NH₂)(NH₃)PtCl₂ (DMF)

Pt, 0, 0.9798350163, -0.1126990457, -0.1632621625 Cl, 0, 1.1928246782, 2.2805040674, -0.1068370902 C1, 0, 2.9123245949, -0.4559224718, 1.2340090231 N, 0, 0.8803044088, -2.2507127785, -0.3158069282 H, 0, 1.0399573192, -2.5731477069, -1.2685868064 N, 0, -0.7421178182, 0.1786317748, -1.4252762632 C, 0, -2.1203875036, 0.1414399395, -0.8699804246 C, 0, -2.3255400932, 1.2343806612, 0.1707957025 C, 0, -3.7636390779, 1.2156348326, 0.6907415632 C, 0, -4.1418121993, -0.1569712096, 1.2454183574 C, 0, -3.8973139591, -1.2575713392, 0.2140553993 C, 0, -2.4543080772, -1.2278006478, -0.2921860454 H, 0, 0.0015933248, -2.6561530581, -0.0007757814 H, 0, 1.6236422124, -2.6379600091, 0.2647930214 H, 0, -0.6807910963, -0.4790697552, -2.202924563 H, 0, -0.5801280748, 1.1022089917, -1.830251096 H, 0, -2.8003192749, 0.3339010692, -1.7149529026 H, 0, -2.0854087706, 2.2156554274, -0.2573147558 H, 0, -1.6229418378, 1.0677335675, 0.9994316733 H, 0, -4.449826261, 1.479822443, -0.127596052 H, 0, -3.8849607868, 1.9866190591, 1.4613752141 H, 0, -5.1923911224, -0.1615181579, 1.5620240845 H, 0, -3.5400069873, -0.3633125497, 2.1429877883 H, 0, -4.5834498509, -1.1244353244, -0.6352242492 H, 0, -4.1165370318, -2.2425535104, 0.6435028631 H, 0, -1.7761326121, -1.4296870975, 0.5500038686 H, 0, -2.2988691194, -2.0107171717, -1.0470634384

Sum	of	electronic	and	zero-po	int Energies=	-18582.213915
Sum	of	electronic	and	thermal	Energies=	-18582.199319
Sum	of	electronic	and	thermal	Enthalpies=	-18582.198375
Sum	of	electronic	and	thermal	Free Energies=	-18582.257208

cis-(Quinoline)(NH₃)PtCl₂ (DMF)

Pt,0,1.5370870957,-2.2321407227,-0.355553642 Cl,0,3.275793769,-3.8888603724,-0.4487308767 Cl,0,-0.2041399839,-3.8768791317,-0.224882275 H,0,2.1600778127,-1.2542946413,-2.8785345467 C,0,3.55321719,-0.3510847511,0.743367002 C,0,4.4080236186,0.9572397448,-1.515582251 C,0,4.5243506325,0.6567007242,0.8710658308 H,0,3.1968832024,-0.8846276201,1.6189936627 C,0,4.9473253994,1.3126555091,-0.2583487808 H,0,4.9145553277,0.8948334649,1.85460274 H, 0, 5.6934461206, 2.1010670772, -0.2012557731 H, 0, -0.9101376728, -1.2053612135, -0.280327094 H, 0, 0.0481917481, -0.2075701934, 0.6074438318 H, 0, 0.0322325498, -0.0832524992, -1.0292563423 N, 0, 3.0230082339, -0.7053125704, -0.4180018839 N, 0, -0.0009649258, -0.7449734644, -0.2560765047 C, 0, 3.4298138791, -0.0813750167, -1.5707780355 C, 0, 3.3064251098, 0.1863548079, -3.9711628093 C, 0, 4.2681399165, 1.2208471755, -3.92138246 H, 0, 2.8880156322, -0.1102218823, -4.9288766946 C, 0, 4.8092894746, 1.5964479976, -2.7156405576 H, 0, 4.5786580133, 1.7133448229, -4.8382672291 H, 0, 5.5533152594, 2.3870831763, -2.6604740381 C, 0, 2.8927925974, -0.4544204212, -2.8251412731

Sum	of	electronic	and	zero-poi	int Energies=	-18692.846848
Sum	of	electronic	and	thermal	Energies=	-18692.831993
Sum	of	electronic	and	thermal	Enthalpies=	-18692.831049
Sum	of	electronic	and	thermal	Free Energies=	-18692.891019

(H₂NCH₂CH₂NH₂)PtCl₂ (DMF)

Pt,0,-0.1353400696,0.0000230251,-0.0000242332 Cl,0,-1.7230523,1.7027111161,0.0540658379 N,0,1.3910289082,-1.3642983703,-0.046566981 Cl,0,-1.7231259834,-1.7025944679,-0.0539801927 N,0,1.3910955409,1.364261705,0.0467092293 C,0,2.6609493164,-0.6853276397,0.3214214852 H,0,1.4600143539,-1.7573304177,-0.9867080291 H,0,1.2135643876,-2.1539956267,0.5745700418 H,0,1.2136836824,2.1539824621,-0.5744130371 C,0,2.6609949246,0.6852354181,-0.3212353916 H,0,1.4600635109,1.7572612972,0.9868648917 H,0,3.5247609123,1.2742621048,0.0013042801 H,0,2.6844705234,0.6007266109,-1.411130162 H,0,3.524693122,-1.2743963915,-0.0010954175 H,0,2.6843991704,-0.6008208252,1.411317678

Sum	of	electronic	and	zero-po:	int Energies=	-1229.766867
Sum	of	electronic	and	thermal	Energies=	-1229.757873
Sum	of	electronic	and	thermal	Enthalpies=	-1229.756929
Sum	of	electronic	and	thermal	Free Energies=	-1229.802954

[H₂NCH₂CH₂NH(CH₂CH₂OH)]PtCl₂ (DMF)

Pt,0,-0.1480021796,0.0483948473,-0.2081918463 Cl,0,-1.9985223703,-1.3588675636,-0.8279208505 N,0,1.6257375853,1.1204277984,0.3697137073 Cl,0,-1.5156688277,2.0017624556,0.1090854171 N,0,1.2271971968,-1.549185618,-0.4831147051 S35

```
C, 0, 2.7687930812, 0.3027860971, -0.1220434002
C, 0, 1.6521642627, 1.4315232895, 1.8138314251
H, 0, 1.6049164188, 1.9999981556, -0.1470109089
H, 0, 0.8791391353, -2.428801796, -0.1048906148
C, 0, 2.5116524759, -1.1654251166, 0.1451216237
H, 0, 1.3438444656, -1.6938326689, -1.4859156997
H, 0, 3. 3366981867, -1. 7727147205, -0. 2433747322
H, 0, 2.427081412, -1.361179152, 1.2170423492
H, 0, 3.7107258397, 0.6151209813, 0.3416333399
H, 0, 2.8519481273, 0.4808922272, -1.1985098531
C, 0, 2.7259752752, 2.4401200128, 2.2014783762
0,0,2.5628928575,2.665814791,3.5904356033
H, 0, 1.7888952007, 0.5006674505, 2.3712992051
H, 0, 0.6725974683, 1.8387760863, 2.0779729526
H, 0, 2.5845384002, 3.3711969843, 1.6331326194
H, 0, 3.7329654781, 2.0583617686, 1.9882465997
H, 0, 3.2371305103, 3.2944636902, 3.8830793921
```

Sum	of	electronic	and	zero-poi	int Energies=	-18578.852582
Sum	of	electronic	and	thermal	Energies=	-18578.839142
Sum	of	electronic	and	thermal	Enthalpies=	-18578.838198
Sum	of	electronic	and	thermal	Free Energies=	-18578.895075

[MeHNCH₂CH₂NHMe]PtCl₂ (DMF)

Pt, 0, -0.158391473, 0.0002877319, -0.0003133016 Cl, 0, -1.801461674, -1.7528501945, -0.1330602721 N, 0, 1.4429756824, 1.4171549538, 0.1430201216 Cl, 0, -1.801652832, 1.7533202732, 0.1323263489 N, 0, 1.4429079116, -1.4164937401, -0.1436561035 C, 0, 2.6697408608, 0.7004535115, -0.2876127617 C, 0, 1.5641630287, 2.0346043698, 1.4757797409 H, 0, 1.2480852532, 2.160364382, -0.5264815195 H, 0, 1.2478274289, -2.159837168, 0.5256576088 C, 0, 2.6695552663, -0.6998901243, 0.287448912 C, 0, 1.5644075089, -2.0337106415, -1.4764880933 H, 0, 3.5654131941, -1.2475134346, -0.0313757792 H, 0, 2.667978552, -0.6687799042, 1.3806758236 H, 0, 3.5655206334, 1.2479456548, 0.0316505634 H, 0, 2.66868473, 0.6694193923, -1.3808402437 H, 0, 1.7363696367, 1.2631545373, 2.2284864359 H, 0, 0.6318403816, 2.5519713743, 1.7072063081 H, 0, 2.3978603592, 2.7473074028, 1.4901725079 H, 0, 1.7365388162, -1.2621327149, -2.2290783769 H, 0, 0.632228261, -2.5512545198, -1.7080947514 H, 0, 2.398258074, -2.7462396418, -1.4908701684

Sum	of	electronic	and	zero-po	int Energies=	-18503.710003
Sum	of	electronic	and	thermal	Energies=	-18503.697858
Sum	of	electronic	and	thermal	Enthalpies=	-18503.696914
-18503.749586

(1,2-DACH)PtCl₂ (DMF)

Pt, 0, 0.944889003, -0.0000128152, -0.0001168786 Cl, 0, 2.5807580117, 1.7673518359, 0.0457812777 N, 0, -0.665511635, -1.3831449839, -0.014125471 Cl, 0, 2.5811792792, -1.7671070763, -0.0453152395 N, 0, -0.6655129632, 1.3830438876, 0.0134490583 C, 0, -1.9367728945, -0.6842825237, -0.3367982573 H, 0, -0.7169010889, -1.8013367531, 0.9157135281 H, 0, -0.5006202959, -2.1526703611, -0.6624375253 H, 0, -0.5005383714, 2.1526623971, 0.6616206873 C, 0, -1.936694363, 0.6841857547, 0.3363907395 H, 0, -0.7169605365, 1.8010194302, -0.9164796331 C, 0, -3.1680354794, 1.515290712, -0.0657261828 H, 0, -1.9230181532, 0.5303814508, 1.4220508331 C, 0, -4.3840699676, 0.6406671772, -0.4124220222 C, 0, -4.383745483, -0.6406666881, 0.4133440059 C, 0, -3.1680791832, -1.515328054, 0.0655652024 H, 0, -1.9232682324, -0.5304512121, -1.4224581169 H, 0, -2.9123238821, 2.1443646468, -0.9282746329 H, 0, -3.4114643107, 2.1969083219, 0.7571180043 H, 0, -2.9120805075, -2.1448885223, 0.9276742831 H, 0, -3.4121529834, -2.1965037675, -0.7574572317 H, 0, -4.3683625682, 0.3816481737, -1.4797632338 H, 0, -5.3039257999, 1.2115586918, -0.2450774993 H, 0, -5.3037684355, -1.2115193517, 0.246767725 H, 0, -4.3671191595, -0.3816703709, 1.4806765795

Sum of electronic and zero-point Energies=-18581.026847Sum of electronic and thermal Energies=-18581.013695Sum of electronic and thermal Enthalpies=-18581.012751Sum of electronic and thermal Free Energies=-18581.069488

(1,4-DACH)PtCl₂ (DMF)

Pt,0,-0.0645689149,0.714858323,-0.0120060868 C,0,0.5267282468,-2.1527836699,-1.3372737422 N,0,-0.3575667454,-0.6918979176,1.5838012517 H,0,0.9565718284,-2.5590422391,-2.2611851824 N,0,0.3032854277,-0.7040877417,-1.5813718807 H,0,0.3850067184,-0.5162674079,2.2614666513 H,0,-1.205918783,-0.3364337128,2.0248166174 H,0,-0.5689251416,-3.9389114236,-1.0254953666 H,0,-1.4697595566,-2.7403699083,-1.9304865614 C,0,-0.7944236885,-2.8664119657,-1.0750474934 C,0,-1.4903730493,-2.4249211935,0.2166127795 H,0,-2.1968147647,-3.204674865,0.5207582962 C,0,1.5249547519,-2.3491914543,-0.182492238

```
C, 0, -0.5043916545, -2.1547519626, 1.3669755337
H, 0, -2.0895956928, -1.523355375, 0.0391323575
C, 0, 0.852523324, -2.8027582468, 1.11738784
H, 0, 2.0756238579, -1.4141020219, -0.0219467092
H, 0, 2.2717979109, -3.0960263952, -0.4723912845
H, 0, -0.9127126442, -2.5656034891, 2.2985796215
H, 0, 1.5199212665, -2.625756313, 1.9700192775
H, 0, 0.6835912193, -3.8863449623, 1.0876655548
H, 0, 1.1320112137, -0.3126658881, -2.0292006545
H, 0, -0.4470727887, -0.5803854015, -2.2619250019
Cl, 0, -0.4531615364, 2.3636761572, 1.7014879055
Cl, 0, 0.236869195, 2.3489090746, -1.7561814851
```

Sum	of	electronic	and	zero-poi	int Energies=	-18581.025288
Sum	of	electronic	and	thermal	Energies=	-18581.012749
Sum	of	electronic	and	thermal	Enthalpies=	-18581.011805
Sum	of	electronic	and	thermal	Free Energies=	-18581.065970

(1,2-DACH)PtCl(Gua) (DMF)

Pt, 0, 0.7780156707, 0.1618012337, -1.105770499 H, 0, 5.138609362, 1.3940941886, 2.3229904542 N, 0, -0.8133511612, -1.2092034423, -0.9333563474 Cl, 0, 2.1470780569, -1.4149881161, -2.3058736203 N, 0, -0.6255587377, 1.415771834, -0.0947645988 C, 0, -2.0701909097, -0.5086459144, -0.5561420171 H, 0, -0.5563751821, -1.8863286489, -0.2130654209 H, 0, -0.9431073824, -1.7466386827, -1.7907581663 H, 0, -0.1994863709, 1.9650860382, 0.650937593 C, 0, -1.7406868093, 0.5929511865, 0.4443382689 H, 0, -0.9832263158, 2.0889901849, -0.7737178976 C, 0, -2.9772622256, 1.4466462628, 0.774554678 H, 0, -1.3504008364, 0.1243246921, 1.3557038333 C, 0, -4.2904432141, 0.6553653295, 0.6541749391 C, 0, -4.0748812493, -0.8127453284, 1.0030681434 C, 0, -3.1267551094, -1.4820437796, -0.0053358264 H, 0, -2.4342263472, -0.0358530956, -1.4761448332 H, 0, -3.008492874, 2.3114931702, 0.0989856367 H, 0, -2.863614935, 1.8457760303, 1.7887049265 H, 0, -2.621198477, -2.3299177388, 0.4748487504 H, 0, -3.6946977557, -1.8926034096, -0.8477549408 H, 0, -4.6802106145, 0.7289453042, -0.3700645397 H, 0, -5.0473907366, 1.1032065887, 1.3071434598 H, 0, -5.0279978277, -1.3523507334, 1.0205642367 H, 0, -3.6574450482, -0.8855347993, 2.0163232798 N, 0, 4.8472391022, 1.7858295395, 1.4332929688 C, 0, 5.5766154473, 2.8046644631, 0.8773519367 N, 0, 5.2499461412, 3.3848980702, -0.2610140243 C, 0, 4.1361051552, 2.8734744949, -0.8088769855 C, 0, 3. 3327773463, 1. 8446268577, -0. 3313229222

S38

C, 0, 3.6763369356, 1.2145073084, 0.9052662963 N, 0, 3.5572542228, 3.2688068932, -1.9821609092 C, 0, 2.4578551664, 2.5001681513, -2.1896401292 N, 0, 2.2933090917, 1.6334786337, -1.2142434156 O, 0, 3.104514963, 0.3088735251, 1.5051258215 N, 0, 6.6482155246, 3.24847503, 1.5660205918 H, 0, 3.8894047031, 4.0028669981, -2.595172598 H, 0, 1.8196166669, 2.6032417405, -3.0546900241 H, 0, 7.2654664857, 3.880431047, 1.0752536519 H, 0, 7.0771400782, 2.6769588926, 2.2797202488

Sum	of	electronic	and	zero-po	int Energies=	-18662.704507
Sum	of	electronic	and	thermal	Energies=	-18662.684458
Sum	of	electronic	and	thermal	Enthalpies=	-18662.683514
Sum	of	electronic	and	thermal	Free Energies=	-18662.755259

cis-(Thiazole)₂PtCl₂ (DMF)

Pt, 0, 0.0008489461, -0.8565203995, -0.0004224706 Cl, 0, -1.7371650086, -2.5171005859, 0.0100933935 Cl, 0, 1.7407364967, -2.5151292694, -0.0119237245 N, 0, -1.4836040274, 0.6220520256, 0.0074954932 C, 0, -1.6389678731, 1.4889649373, 0.9516275018 C, 0, -2.4427990222, 0.7522426872, -1.0886294698 S, 0, -2.8991876278, 2.6433611923, 0.703921941 H, 0, -1.0292451599, 1.5160337409, 1.8475621685 C, 0, -3.2623856331, 1.9607056147, -0.8034364261 H, 0, -3.036051793, -0.1808529747, -1.1436136314 H, 0, -1.902065931, 0.8096091448, -2.0487707016 H, 0, -4.0709372781, 2.3393701809, -1.4133246446 N, 0, 1.4837938533, 0.6235320673, -0.0075981728 C, 0, 2.4429430457, 0.7540736653, 1.0885239854 C, 0, 1.6382689855, 1.4910753625, -0.9513109967 C, 0, 3.2610909411, 1.9636896741, 0.8040866195 H, 0, 3.0372888998, -0.1783941953, 1.1427117912 S, 0, 2.897232128, 2.646696183, -0.702979376 H, 0, 1.0285611636, 1.5179294602, -1.8472631258 H, 0, 4.0692465471, 2.3428831255, 1.4141692305 H, 0, 1.9022963475, 0.8100793631, 2.0487806153

of	electronic	and	zero-po	int Energies=	-19373.3	71741
of	electronic	and	thermal	Energies=	-19373.3	55390
of	electronic	and	thermal	Enthalpies=	-19373.3	54445
of	electronic	and	thermal	Free Energies=	-19373.4	19732
	of of of of	of electronic of electronic of electronic of electronic	of electronic and of electronic and of electronic and of electronic and	of electronic and zero-pos of electronic and thermal of electronic and thermal of electronic and thermal	of electronic and zero-point Energies= of electronic and thermal Energies= of electronic and thermal Enthalpies= of electronic and thermal Free Energies=	of electronic and zero-point Energies=-19373.3of electronic and thermal Energies=-19373.3of electronic and thermal Enthalpies=-19373.3of electronic and thermal Free Energies=-19373.4

cis-(NH₃)₂Pt(CH₃)Cl (DMF)

Pt,0,-0.0102538158,0.0965610565,0.0521179637 C,0,0.0032500648,1.6146181492,-1.3589997965 N,0,-0.024744566,-1.5671455735,1.6194834145

```
Cl,0,-0.0849951457,-1.6151013475,-1.6844477355

N,0,0.056931403,1.6634247295,1.5627613004

H,0,-0.8313751111,-1.5432622982,2.239500157

H,0,0.8012517982,-1.5826594333,2.2137289368

H,0,-0.0540476792,-2.459954405,1.1306155178

H,0,0.8842226111,1.5836589031,2.1503943179

H,0,-0.7506052448,1.6244899243,2.1811790205

H,0,0.0724927591,2.5949860569,1.1529320685

H,0,-0.0271557003,1.1955195968,-2.3697964237

H,0,0.9173077137,2.2121800924,-1.23853965

H,0,-0.8723790872,2.2599845487,-1.2045290913
```

Sum	of	electronic	and	zero-poi	int Energies=	-17927.708452
Sum	of	electronic	and	thermal	Energies=	-17927.697808
Sum	of	electronic	and	thermal	Enthalpies=	-17927.696863
Sum	of	electronic	and	thermal	Free Energies=	-17927.746236

cis-(NH₃)₂PtBr₂ (DMF)

Pt,0,-0.0000854384,-0.0243183985,0.5283149598 Br,0,-0.0140201394,1.8271035419,-1.1719896822 Br,0,0.0133708488,-1.8443380057,-1.2055973235 N,0,0.0230988697,-1.5790162822,2.0140234335 N,0,-0.0228608214,1.5028397692,2.0422905752 H,0,-0.7591750686,-1.5220278381,2.6634120787 H,0,0.8799217133,-1.5739994039,2.5643458625 H,0,-0.0325167169,-2.4818350145,1.5439182983 H,0,0.7589771198,1.4334731199,2.6909942752 H,0,-0.8800402095,1.4878889597,2.5918817737 H,0,0.0333298426,2.4142295524,1.5891057487

Sum	of	electronic	and	zero-po:	int Energies=	-22570.	081327
Sum	of	electronic	and	thermal	Energies=	-22570.	071412
Sum	of	electronic	and	thermal	Enthalpies=	-22570.	070468
Sum	of	electronic	and	thermal	Free Energies=	-22570.	120296

cis-(NH₃)₂PtI₂ (DMF)

```
Pt,0,0.,0.,0.7905912286
```

$$\begin{split} & \text{I,0,-0.0107295848,1.9653120493,-1.0627397188} \\ & \text{I,0,0.0107295848,-1.9653120493,-1.0627397188} \\ & \text{N,0,0.0009188415,-1.5338212426,2.3308322125} \\ & \text{N,0,-0.0009188415,1.5338212426,2.3308322125} \\ & \text{H,0,-0.8791293134,-1.5482285695,2.8431829092} \\ & \text{H,0,0.7483175699,-1.4020019267,3.0098424005} \\ & \text{H,0,0.1244391858,-2.4566664673,1.9170480822} \\ & \text{H,0,-0.7483175699,1.4020019267,3.0098424005} \\ & \text{H,0,-0.7483175699,1.4020019267,3.0098424005} \\ & \text{H,0,-0.7483175699,1.4020019267,3.0098424005} \\ & \text{H,0,-0.7483175699,1.4020019267,3.0098424005} \\ & \text{H,0,-0.1244391858,2.4566664673,1.9170480822} \\ \end{array}$$

Sum	of	electronic	and	zero-po:	int Energies=	-31266.1	38828
Sum	of	electronic	and	thermal	Energies=	-31266.1	29256
Sum	of	electronic	and	thermal	Enthalpies=	-31266.1	28312
Sum	of	electronic	and	thermal	Free Energies=	-31266.1	77877

cis-(C₅H₅N)₂PtI₂ (DMF)

Pt,0,0.0007561884,-0.8336020783,-0.0003183585	
I,0,1.9583037236,-2.6943308033,-0.1197654308	
I,0,-1.9544681467,-2.696784098,0.1187122824	
C,0,1.9142296753,1.2543660468,-1.1847854104	
C,0,2.0133398995,1.1694568001,1.1264502762	
C,0,2.8541697489,2.2764029881,-1.2280236006	
H,0,1.475509647,0.8486873299,-2.0903880169	
C,0,2.9560197735,2.1886705859,1.1652327396	
H, 0, 1.6522055491, 0.6961474981, 2.0335948193	
C,0,3.3853374445,2.7535216301,-0.0327507275	
H, O, 3.1585770564, 2.6830329062, -2.1868388613	
H, 0, 3.3413331638, 2.5247830039, 2.1223030832	
H, 0, 4.1224820237, 3.5511355518, -0.034665987	
C,0,-1.9152141492,1.2516258367,1.1848866774	
C, 0, -2.0140166239, 1.1676732126, -1.1263987864	
C,0,-2.8562190609,2.2726679428,1.22850437	
H, 0, -1.4761601381, 0.8459836794, 2.0903438486	
C,0,-2.9577409508,2.1859330583,-1.164802404	
H, 0, -1.6523097753, 0.6951491505, -2.0337249099	
C,0,-3.387754305,2.7497940622,0.0333995658	
H, O, -3.161142364, 2.6785350314, 2.1874788656	
H, 0, -3.3433082889, 2.5220928057, -2.1217538653	
H, 0, -4.1257094182, 3.5466573758, 0.0356060684	
N,0,1.5033377828,0.7154900546,-0.0279537776	
N,0,-1.5036450953,0.7137143086,0.0278463696	
Sum of electronic and zero-point Energies=	-31649.043842
Sum of electronic and thermal Energies=	-31649.027422
Sum of electronic and thermal Enthalpies=	-31649.026478

Suiii	ΟL	erectronic	ana	Chermar	Energres-	-31649.02/422
Sum	of	electronic	and	thermal	Enthalpies=	-31649.026478
Sum	of	electronic	and	thermal	Free Energies=	-31649.095318

cis-(EtNH₂)₂Pt(OCMe)₂ (CHCl₃) (PCM)

Pt	7.47155	13.76472	4.11711
0	5.25217	12.54845	5.49516
0	9.69231	12.55727	2.73355
Ν	6.31325	15.31603	5.3624
N	8.62646	15.32305	2.87754
Н	5.99867	16.09927	4.79159
Н	8.94027	16.10434	3.45143
Н	5.47743	14.77573	5.59394
Н	9.46297	14.78514	2.64295
С	6.43759	12.35812	5.22979

С С С Η Η Η Η Η Η С С Η Η Η Η С С Η Η Η Η Η Η

С

C N N O O P H H H H H H H H H

8.50739	12.36388	2.99894
7.14011	11.1805	5.87883
7.80661	11.18732	2.34612
6.41969	10.46365	6.29315
8.52809	10.4732	1.92894
7.75334	11.58032	6.69847
7.1923	11.58895	1.52817
7.82861	10.68177	5.19117
7.11931	10.68495	3.03233
6.94135	15.8245	6.59214
7.99643	15.83574	1.65054
7.86554	16.33941	6.30658
7.07165	16.3479	1.93911
7.23609	14.95562	7.18978
7.70258	14.96894	1.04946
6.04798	16.74961	7.40547
8.88755	16.76581	0.84039
9.80398	16.25483	0.52218
5.7599	17.63498	6.82534
6.56858	17.09385	8.3067
5.1321	16.23576	7.72064
9.17468	17.64914	1.42406
8.36557	17.11305	-0.05889

cis-(ⁱPrNH₂)₂Pt(OCMe)₂ (CHCl₃)

(P	CM)	
10.86424	13.26092	19.89852
11.53881	11.98737	20.36973
9.05482	11.61393	18.1097
10.15585	11.48277	17.07442
6.6704	15.40681	17.31671
6.35623	13.91882	17.27707
4.90726	13.65495	16.87913
9.05274	14.25796	22.84214
8.20281	15.18996	21.99296
6.73938	14.77553	21.99633
6.68607	13.30696	18.58114
8.71271	15.20584	20.60569
11.48224	14.31973	19.993
8.17265	10.75853	18.13836
8.8813	13.29645	19.30145
12.61453	12.13858	20.52594
11.07533	11.70462	21.32493
11.36377	11.15515	19.68189
9.93472	12.19995	16.2716
11.13316	11.76119	17.47865
10.18669	10.47195	16.6478
6.05788	15.91508	18.07409
7.72763	15.57679	17.55018
6.45344	15.87156	16.34901

Ρt 0 0 Ν Ν Η Н Η Н С С C C Н Н Η Н Η Н С С Н Н Н Н С C С С C C С

Н	7.01783	13.43947	16.54508
Н	4.6939	12.58003	16.85092
Н	4.69461	14.06716	15.88599
Н	4.21648	14.12293	17.59303
Н	8.99031	13.23121	22.46134
Н	10.10616	14.56074	22.83802
Н	8.70168	14.26571	23.8799
Н	8.27747	16.20615	22.41109
Н	6.32951	14.82917	23.01069
Н	6.13381	15.43095	21.35735
Н	6.63488	13.74298	21.6407
Н	6.05212	13.67455	19.29038
Н	6.51594	12.30064	18.53533
Н	8.2092	15.91477	20.07452
Н	9.69483	15.48945	20.59753

cis-(PhCH₂NH₂)₂Pt(OCMe)₂ (CHCl₃)

	(PCM)		
7.4	714 1	3.70809	4.1126
5.	30087	12.49883	5.57563
9.	64191	12.4991	2.64931
6.	31541	15.26138	5.35499
8.	62733	15.26148	2.87025
5.	99432	16.04458	4.78769
8.	94848	16.04465	3.43754
5.	48278	14.71765	5.59118
9.	4599	14.71769	2.634
6.	47489	12.30595	5.26633
8.	46796	12.30603	2.95879
7.	20327	11.13312	5.89395
7.	7397	11.13304	2.33135
6.	50083	10.42443	6.35071
8.	4422	10.42455	1.87435
7.	85873	11.53865	6.67724
7.	08387	11.5384	1.54828
7.	85455	10.6237	5.17842
7.	08879	10.62341	3.04707
6.	94261	15.77661	6.58783
8.	00009	15.77675	1.63745
7.	87615	16.27468	6.30594
7.	0666	16.2749	1.9194
7.	21048	14.90944	7.19974
7.	7321	14.9096	1.02557
6.	06062	16.72228	7.36571
8.	88209	16.72235	0.85951
9.	86509	16.22803	-0.00614
10	.70998	17.0974	-0.69336
10	.58074	18.47695	-0.52599
9.	60126	18.98072	0.32918
8.	75813	18.10691	1.01558

Ρt 0 0 C C С С Н Н Η Н Н Η Ν С С С

C C C C

C H H H H H H H H H H H

С	5.07757	16.22806	8.23135
Н	9.9669	15.153 -	-0.14599
Н	11.4663	16.69835	-1.36467
Н	11.23693	19.15586	-1.06465
Н	9.48947	20.05445	0.45833
Н	7.98939	18.5058	1.67571
С	4.2327	17.0975	8.9185
С	4.36202	18.47703	8.75108
С	5.34156	18.98071	7.89592
С	6.18467	18.10684	7.20959
Н	4.9757	15.15304	8.37123
Н	3.47633	16.69852	9.5898
Н	3.70585	19.156	9.28968
Н	5.45341	20.05443	7.76673
Н	6.95345	18.50566	6.54947

cis-(PhCH₂CH₂NH₂)₂Pt(OCMe)₂ (CHCl₃) (PCM)

7	7.4703	13.5311	4.11306
	5.28433	12.3314	5.55717
	9.65618	12.33073	2.6694
	6.45888	12.13055	5.25315
	8.48142	12.1304	2.97294
	7.1724	10.94924	5.8822
	7.7675	10.94966	2.34328
	6.45903	10.23201	6.30755
	7.80053	11.34552	6.69228
	7.84747	10.45231	5.18039
	8.48065	10.23196	1.91835
	7.14029	11.3465	1.53275
	7.09153	10.45316	3.04452
	6.3048	15.09273	5.33892
	6.93876	15.67168	6.52905
	6.01733	16.59565	7.33458
	6.71009	17.16192	8.54686
	7.39218	18.38227	8.48009
	8.07061	18.88599	9.58951
	8.07757	18.17309	10.78822
	7.40087	16.95578	10.86827
	6.72401	16.45676	9.75624
	5.95246	15.83738	4.73931
	5.49529	14.52857	5.60607
	7.83145	16.22152	6.20943
	7.28314	14.84541	7.15993
	5.12785	16.02915	7.63998
	5.67146	17.41113	6.68503
	7.38638	18.94817	7.54988
	8.59025	19.83853	9.51856
	8.60286	18.56532	11.65537

Η Н Ν С С С C C С С С Η Н Н Η Η Н Н Η Н Η Н

7.3959	16.39503	11.79984
6.19354	15.50874	9.82861
8.63615	15.09251	2.88729
8.00239	15.67124	1.69695
8.92398	16.595	0.89135
8.2314	17.16105	-0.32115
7.54932	18.38142	-0.25471
6.87106	18.88495	-1.36432
6.86428	18.17182	-2.56291
7.54097	16.9545	-2.64263
8.21765	16.45566	-1.53039
8.98831	15.83728	3.48685
9.44577	14.5284	2.62037
7.10968	16.22119	2.01633
7.65806	14.84485	1.06618
9.81347	16.02839	0.58618
9.26979	17.4106	1.54077
7.55499	18.9475	0.67539
6.35141	19.83751	-1.29363
6.33912	18.5639	-3.4302
7.54609	16.39358	-3.5741
8.74809	15.50761	-1.6025

cis-(CH₂=CHCH₂NH₂)₂Pt(OCMe)₂ (CHCl₃) (PCM)

Pt	7.4717	13.76314	4.11364
0	5.21453	12.56144	5.43602
0	9.7273	12.56715	2.784
N	6.28371	15.31987	5.32716
N	8.65889	15.32112	2.90033
Н	5.98705	16.10792	4.75333
Н	8.95679	16.10963	3.47286
Н	5.44148	14.78078	5.53752
Н	9.50035	14.78093	2.68955
С	6.40532	12.36305	5.20366
С	8.53867	12.36343	3.02323
С	7.08585	11.1877	5.87804
С	7.86144	11.18148	2.35729
Н	6.35216	10.48769	6.29764
Н	8.59703	10.48531	1.93471
Н	7.70066	11.59151	6.69438
Н	7.23766	11.5783	1.54437
Н	7.77167	10.66806	5.20321
Н	7.18435	10.65914	3.03884
С	6.89072	15.82599	6.57201
С	8.05046	15.82582	1.6556
Н	7.85067	16.29133	6.32333
Н	7.09132	16.29254	1.90495
Н	7.10726	14.95362	7.19981

Pt O O

C C C C

H H H H N C C

C C C C

Н Н Н Н Н Н Н Н Н Н Л С

Н	7.83207	14.95252	1.02971
С	6.01768	16.79881	7.30773
С	8.92317	16.79628	0.91635
Н	9.89842	16.42029	0.60139
Н	9.24317	18.72558	0.0997
С	8.57848	18.05597	0.64002
Н	5.04202	16.42415	7.62293
Н	7.61158	18.45946	0.93824
Н	5.69692	18.73145	8.11633
С	6.36223	18.05953	7.57958
Н	7.32917	18.46194	7.28001

cis-(CyNH₂)₂Pt(OCMe)₂ (CHCl₃) (PCM)

7.39084	12.63144	2.12915
5.07496	11.42947	3.34029
9.64277	11.3691	0.86011
6.27085	11.2194	3.14782
8 43655	11 21481	1 04045
6,90267	10.00375	3,79892
7,74214	10.07001	0.32757
6,14171	9,28265	4.12371
7 45114	10 35893	4 68244
7 63763	9 52231	3 14809
8,46391	9.32543	-0.03187
7.21824	10.49893	-0.53796
6,97878	9.59759	0.95176
6.21531	14.19246	3.38864
6.72984	14.75593	4.65198
7.01137	13.6477	5.66116
7.55481	14.22088	6.96993
8.80304	15.06925	6.7305
8.53746	16.16534	5.69917
7.98853	15.57915	4.39844
5.92973	14.95689	2.7785
5.37144	13.64545	3.5722
5.96588	15.42444	5.08452
7.7466	12.95735	5.2214
6.09834	13.06624	5.84625
7.77566	13.40455	7.66883
6.78019	14.83968	7.44744
9.6157	14.42198	6.36814
9.14938	15.51146	7.67337
9.45558	16.73042	5.49528
7.81219	16.884	6.10938
7.77685	16.38177	3.67755
8.7444	14.92041	3.94444
8.65351	14.18755	0.95073
6.96266	15.7204	0.01381

С

C C C

C H H H H H H H H H H H H H H H

Ρt С С C C Н С Н Η С Н Ν Ν 0 0 Н Η Н Н Η Н Η Н Н Η Н Η Н

6.44987	16.40142	-1.25508
6.12593	15.37556	-2.34055
7.32557	14.47233	-2.62367
7.8335	13.8041	-1.34608
8.1741	14.84225	-0.28209
8.97919	14.90302	1.59896
9.46642	13.60483	0.73943
6.17037	15.08264	0.43446
7.21718	16.47241	0.77432
7.21482	17.09852	-1.6288
5.56415	17.00562	-1.02208
5.8067	15.88364	-3.2595
5.27779	14.75693	-2.01095
8.13442	15.07052	-3.06965
7.06118	13.70609	-3.36299
8.71315	13.18283	-1.5611
7.06003	13.13433	-0.94146
8.97509	15.48823	-0.68052

cis-(Me₂NH)₂Pt(OCMe)₂ (CH₂Cl₂) (PCM)

9.00692	13.26258	19.34054
10.93258	13.15253	20.13723
11.78098	11.90061	20.08212
9.33887	11.62124	18.14205
10.05003	11.8513	16.81851
5.58478	13.6689	16.86257
6.63855	13.52608	17.14402
7.00403	12.61689	16.65882
8.25321	14.02756	22.43597
7.90356	14.91629	21.904
6.85938	14.75583	21.61429
6.79856	13.39619	18.5959
8.72266	15.12532	20.71135
11.38134	14.12579	20.74653
8.92194	10.50071	18.4091
12.6977	12.0155	20.67365
11.19967	11.04577	20.44639
12.04454	11.67614	19.04171
9.50556	12.6058	16.23724
11.04931	12.2641	16.99757
10.12649	10.92225	16.23864
7.22485	14.3752	16.78303
9.05825	16.51856	19.17932
8.44181	17.23958	20.69264
7.35493	16.31469	19.63839
7.94045	15.77973	22.58578
6.04652	12.28634	20.21578
6.40229	11.34324	18.75783

cis-(Et₂NH)₂Pt(OCMe)₂ (CH₂Cl₂) (PCM)

Pt	9.31366	13.45017	19.18197
С	11.17173	13.42388	20.13866
С	12.17286	12.2995	19.9815
С	9.88261	11.91528	17.93058
С	10.64635	12.27535	16.66623
С	7.57954	14.84771	16.34931
С	6.9806	13.54892	16.85559
Н	5.92177	13.50339	16.56536
Н	8.1582	13.62761	21.98758
С	7.8341	14.64864	21.7569
Н	6.82262	14.57206	21.33636
N	7.12577	13.40916	18.31461
N	8.72449	15.15275	20.69795
0	11.44579	14.33035	20.92685
0	9.56661	10.74705	18.11975
H	13.03675	12.4424	20.64235
Н	11.68443	11.34308	20.20161
Н	12.5132	12.24345	18.94088
Н	9.98808	12.85911	16.0097
Н	11.50161	12.91845	16.89883
Н	10.97824	11.3751	16.13282
Н	7.47722	12.68698	16.39525
Н	8.10508	17.16867	20.96189
Н	7.36784	16.31142	19.61141
С	9.36658	17.03846	19.23095
С	7.8061	15.47013	23.04192
Н	6.69599	12.16913	19.92476
Н	6.94799	11.33606	18.39994
С	4.95041	12.14411	18.66307
Н	6.68248	14.22238	18.74328
С	6.46157	12.20501	18.85502
С	8.31262	16.45293	20.15344
Н	9.67308	15.23705	21.07835
Н	7.45941	14.91742	15.26272
Н	8.64768	14.91477	16.58334
Н	7.07839	15.71632	16.79451
Н	9.02069	17.99447	18.82292
Н	9.58318	16.36324	18.39643
Н	10.30325	17.22151	19.77045
Н	7.18533	14.96364	23.78989
Н	7.39065	16.47224	22.89469

Н	8.81458	15.57425	23.46005
Н	4.55092	11.27571	19.19898
Н	4.66131	12.04099	17.61238
Н	4.46063	13.03852	19.06859

cis-(H₂NCH₂CH₂NH₂)Pt(OCMe)₂ (CHCl₃) (PCM)

Pt	6.19932	10.57467	6.10419
0	3.8975	8.97357	6.88882
0	8.10095	9.42012	4.32409
С	5.09144	9.14889	7.09934
С	7.02367	9.15054	4.84685
С	5.76806	8.36896	8.21435
С	6.33368	7.85376	4.48115
Н	5.07071	7.66883	8.69306
Н	6.87754	7.32435	3.68884
Н	6.15737	9.07157	8.96235
Н	5.30414	8.0587	4.1661
Н	6.63452	7.82662	7.81815
Н	6.26423	7.21329	5.36903
Ν	7.30218	12.32301	5.09871
N	5.5343	12.4084	7.35339
С	7.27426	13.48603	5.99541
Н	6.86225	12.54478	4.20799
Н	8.25149	12.02868	4.88323
Н	4.53922	12.39832	7.56385
С	5.89044	13.62994	6.60937
Н	6.01298	12.39375	8.25197
Н	5.85752	14.52466	7.24519
Н	5.14725	13.76119	5.81504
Н	7.54705	14.41814	5.48264
Н	8.01365	13.31633	6.7862

cis-(Me₂NCH₂CH₂NH₂)Pt(OCMe)₂ (CHCl₃) (PCM)

Pt O	6.09268 3.58036	10.49549 9.15685	6.15688 6.77607
0	7.43034	9.40614	3.87138
С	4.77296	9.19417	7.04224
С	6.59651	9.08412	4.71121
С	5.30956	8.34623	8.18407
С	5.94705	7.72065	4.59475
Н	4.54276	7.65578	8.55864
Н	6.33904	7.16903	3.73136
Н	5.62754	9.01096	8.99816
Н	4.86136	7.84126	4.5023
Н	6.19933	7.79193	7.86695
Н	6.12097	7.14476	5.51146

N	7.52572	12.26163	5.40377
N	5.56619	12.23466	7.58069
С	7.42904	13.31364	6.42817
С	7.03261	12.73694	4.10763
С	8.92072	11.83727	5.25943
Н	4.56684	12.2679	7.76745
С	6.0191	13.49064	6.96298
Н	6.01893	12.1043	8.48363
Н	6.00712	14.32831	7.67329
Н	5.32087	13.73719	6.1575
Н	7.80501	14.27324	6.03506
Н	8.08508	13.0274	7.2595
Н	8.96672	11.03587	4.51949
Н	9.28901	11.45591	6.21636
Н	9.56167	12.67594	4.93881
Н	7.09748	11.91819	3.38765
Н	7.63089	13.59025	3.74488
Н	5.9872	13.04649	4.18517

cis-(MeHNCH₂CH₂NHMe)Pt(OCMe)₂ (CHCl₃) (PCM)

Pt	6.3277	10.5769	6.34268
0	4.52833	9.75456	8.39174
0	8.29218	8.62816	5.42752
С	5.47363	9.31237	7.74517
С	7.12824	8.98665	5.30333
С	5.99318	7.92611	8.05958
С	6.25131	8.30904	4.26282
Н	5.4745	7.49495	8.92484
Н	6.79413	7.50914	3.7423
Н	7.07262	7.96873	8.24447
Н	5.90685	9.05535	3.53536
Н	5.85384	7.27626	7.18689
Н	5.35168	7.90412	4.74122
Ν	7.04484	12.26661	4.90239
Ν	5.5291	12.4762	7.39549
С	6.8861	13.53361	5.63286
Н	6.35196	12.24711	4.15503
С	8.37318	12.14158	4.29616
Н	4.56315	12.24011	7.60911
С	5.57404	13.55578	6.40113
С	6.20552	12.80805	8.65144
Н	5.44218	14.54284	6.87095
Н	4.73929	13.40941	5.70546
Н	6.93342	14.39643	4.95072
Н	7.73241	13.62339	6.32339
Н	6.06529	11.98361	9.35396
Н	5.80998	13.73357	9.09643
Н	7.27821	12.93286	8.48041

Н	8.41576	11.23065	3.69517
Н	9.12392	12.06148	5.08702
Н	8.61805	13.00524	3.66036

cis-(Me₂NCH₂CH₂NMe₂)Pt(OCMe)₂ (CH₂Cl₂) (PCM)

21	6 0 5 0 1 6	10 10060	C 10000
Pt	6.05916	10.43869	6.18883
0	3.76655	8.88022	7.13784
0	7.81963	8.29957	5.23462
С	4.97102	9.05318	7.28104
С	6.71286	8.80552	5.09256
С	5.70974	8.28544	8.36079
С	5.78772	8.28011	4.01129
Н	5.02037	7.68345	8.96713
Н	6.27955	7.51016	3.40255
Н	6.2688	8.9772	9.00254
Н	5.44599	9.10323	3.37205
Н	6.4535	7.63383	7.88557
Н	4.89064	7.86288	4.48538
Ν	7.26742	12.09064	5.03956
Ν	5.36533	12.3618	7.34256
С	7.17699	13.28239	5.90335
С	6.6576	12.344	3.72918
С	8.67578	11.72672	4.85109
С	3.91155	12.4092	7.53138
С	5.78772	13.48141	6.48076
С	6.02208	12.43049	8.65294
Н	5.76106	14.42903	7.04409
Н	5.05447	13.57221	5.67323
Н	7.46931	14.18518	5.34165
Н	7.90596	13.16184	6.71089
Н	5.69167	11.58896	9.26675
Н	5.76943	13.36975	9.17246
Н	7.10687	12.3656	8.54454
Н	8.74291	10.83857	4.21896
Н	9.12859	11.49483	5.81849
Н	9.23782	12.54794	4.37707
Н	6.7379	11.44461	3.11375
Н	7.1651	13.17494	3.21154
Н	5.59842	12.58733	3.83722
Н	3.59696	11.57499	8.16227
Н	3.41154	12.31583	6.56394
Н	3.60377	13.35478	8.00693

$\begin{array}{c} \textit{cct-}[Pt(NH_3)_2Cl_2(OOCH)_2] \text{ (DMSO)} \\ \text{(PCM)} \end{array}$

Pt	0.10204	-0.16273	-0.10496
0	0.33427	1.87509	-0.28055

-1.95726	0.35076	0.04576
0.08659	-0.20284	2.25319
0.13498	-0.06236	-2.23175
2.39351	-0.69423	-0.27725
-0.23464	-2.20087	0.00445
1.19317	2.62604	0.36349
-1.0626	-2.83179	-0.7789
-1.24489	-4.03627	-0.70777
2.02881	2.30933	1.18306
-2.29329	0.09355	0.97476
-2.57771	-0.07228	-0.64357
-2.02102	1.36639	-0.04571
0.85553	-0.68311	-2.60149
0.39415	0.89864	-2.4631
-0.74319	-0.2716	-2.70524
1.05353	3.67615	0.04245
-1.60594	-2.22379	-1.52477
	-1.95726 0.08659 0.13498 2.39351 -0.23464 1.19317 -1.0626 -1.24489 2.02881 -2.29329 -2.57771 -2.02102 0.85553 0.39415 -0.74319 1.05353 -1.60594	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

cct-[Pt(NH₃)(Cha)Cl₂(OCOCH₃)₂] (water) (PCM)

Pt	0.08357	0.25647	-0.01363
С	2.95758	-0.65415	-0.04633
С	4.39234	-0.27591	0.23634
С	0.13952	-1.38741	-2.74045
Cl	0.09612	2.13571	1.4795
Cl	-0.01477	-1.25422	1.79704
0	2.63771	-1.80791	-0.3357
Ν	0.0672	-1.45867	-1.26674
Ν	0.19835	1.71347	-1.557
С	0.50052	-2.77784	-3.28071
0	-1.96526	0.48719	-0.09116
0	2.14523	0.36002	0.07577
С	-2.82831	-0.49205	-0.17463
0	-2.55832	-1.67894	-0.35142
С	-4.25028	-0.01123	-0.00765
С	-1.16443	-0.89376	-3.35813
С	-1.05801	-0.8564	-4.88303
С	0.60218	-2.74968	-4.80689
С	-0.68167	-2.22545	-5.44583
Н	4.59826	0.75959	-0.04252
Н	5.06397	-0.95542	-0.29245
Н	4.56886	-0.37908	1.31336
Н	0.96479	-0.71086	-2.99985
Н	0.90101	-1.94203	-0.89584
Н	-0.8023	-1.91841	-0.95544
Н	0.65523	1.39898	-2.41183
Н	-0.73677	2.05057	-1.78711
Н	0.73133	2.50147	-1.18734
Н	-0.27626	-3.49175	-2.97124

Н	1.44764	-3.11239	-2.83993
Н	-4.93753	-0.72322	-0.46897
Н	-4.38869	0.9847	-0.43432
Н	-4.4718	0.04741	1.06435
Н	-1.43732	0.09527	-2.97223
Н	-1.97298	-1.57623	-3.06228
Н	-2.01027	-0.51533	-5.3061
Н	-0.29941	-0.11646	-5.17832
Н	0.83097	-3.75835	-5.17152
Н	1.44646	-2.10914	-5.10052
Н	-0.5647	-2.16743	-6.53503
Н	-1.5002	-2.93428	-5.25222

cct-[Pt(NH₃)₂Cl₂(OCOCH₃)₂] (water) (PCM)

Pt	0.00352	0.19972	-0.17191
Cl	0.02672	2.38849	0.77605
Cl	0.02622	-0.80017	1.96509
С	2.89423	-0.65669	-0.15571
С	4.33029	-0.19553	-0.06845
0	2.59323	-1.84998	-0.13987
Ν	-0.01625	-1.72824	-1.00507
Ν	-0.01386	1.13441	-2.07627
0	-2.05406	0.37044	-0.17112
0	2.06161	0.34834	-0.22604
С	-2.89509	-0.62652	-0.10221
0	-2.60516	-1.82294	-0.08225
С	-4.33392	-0.16479	-0.0804
H	4.55654	0.03733	0.97842
Н	-0.02767	-1.73173	-2.02348
H	0.85058	-2.16977	-0.66734
Н	-0.8799	-2.16051	-0.6476
Н	0.81155	0.89786	-2.62674
Н	-0.84912	0.90114	-2.61302
Н	-0.01061	2.14364	-1.92078
Н	-4.90676	-0.80532	0.59499
Н	-4.7484	-0.2789	-1.08846
Н	-4.42492	0.88033	0.2197
Н	4.4959	0.70928	-0.65748
Н	4.9951	-0.99494	-0.40152

cct-[Pt(NH₃)₂Cl₂(OCOCF₃)₂] (water) (PCM)

Pt	0.0194	0.15518	-0.11841
С	2.88385	-0.69388	-0.15377
С	4.3489	-0.18356	-0.03642
Н	0.00344	-1.58299	-2.17219
Н	0.83858	1.12434	-2.48193

0.03147	2.20908	1.06263
0.02737	-1.07521	1.88714
2.66605	-1.88654	-0.25602
4.6377	0.66856	-1.03108
0.0087	-1.68735	-1.15836
0.01237	1.29952	-1.90932
0.85898	-2.18668	-0.87524
-0.84111	-2.18208	-0.86591
-0.82118	1.12878	-2.47254
0.01651	2.28578	-1.64315
-2.03493	0.31928	-0.10221
5.21369	-1.1958	-0.09393
2.07462	0.3084	-0.12533
4.53533	0.4591	1.12561
-2.84974	-0.67868	-0.12163
-2.63945	-1.87245	-0.22655
-4.3106	-0.16062	0.01274
-5.18148	-1.16805	-0.03683
-4.60589	0.69486	-0.97707
-4.48049	0.48091	1.17797
	$\begin{array}{c} 0.03147\\ 0.02737\\ 2.66605\\ 4.6377\\ 0.0087\\ 0.01237\\ 0.85898\\ -0.84111\\ -0.82118\\ 0.01651\\ -2.03493\\ 5.21369\\ 2.07462\\ 4.53533\\ -2.84974\\ -2.63945\\ -4.3106\\ -5.18148\\ -4.60589\\ -4.48049\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

cct-[Pt(NH₃)₂Cl₂(OCOCHCl₂)₂] (DMSO) (PCM)

-0.16228	-0.03608	-0.29691
0.74961	1.76143	-0.68406
-1.96518	1.06093	-0.53852
-0.41556	0.35381	2.02427
0.08481	-0.32779	-2.37895
1.80922	-1.30379	-0.05511
-1.27885	-1.74303	0.0671
1.7424	2.28054	-0.01555
-1.42341	-2.7218	-0.76303
2.0071	3.69594	-0.58842
3.71972	4.11885	-0.47672
2.37797	1.82294	0.90505
0.98698	4.85241	0.30964
-2.1845	-3.87296	-0.07113
-1.03913	-2.81794	-1.91877
-3.35978	-4.60542	-1.17258
-0.98539	-5.06171	0.49733
-2.37603	1.19873	0.38613
-2.65316	0.58796	-1.12454
-1.7651	1.98011	-0.93518
-0.27348	-1.27103	-2.58588
1.08007	-0.28354	-2.59529
-0.40065	0.36927	-2.94214
1.71486	3.7582	-1.63458
-2.72224	-3.51298	0.80326
	$\begin{array}{c} -0.16228\\ 0.74961\\ -1.96518\\ -0.41556\\ 0.08481\\ 1.80922\\ -1.27885\\ 1.7424\\ -1.42341\\ 2.0071\\ 3.71972\\ 2.37797\\ 0.98698\\ -2.1845\\ -1.03913\\ -3.35978\\ -0.98539\\ -2.37603\\ -2.65316\\ -1.7651\\ -0.27348\\ 1.08007\\ -0.40065\\ 1.71486\\ -2.72224\end{array}$	$\begin{array}{ccccccc} -0.16228 & -0.03608 \\ 0.74961 & 1.76143 \\ -1.96518 & 1.06093 \\ -0.41556 & 0.35381 \\ 0.08481 & -0.32779 \\ 1.80922 & -1.30379 \\ -1.27885 & -1.74303 \\ 1.7424 & 2.28054 \\ -1.42341 & -2.7218 \\ 2.0071 & 3.69594 \\ 3.71972 & 4.11885 \\ 2.37797 & 1.82294 \\ 0.98698 & 4.85241 \\ -2.1845 & -3.87296 \\ -1.03913 & -2.81794 \\ -3.35978 & -4.60542 \\ -0.98539 & -5.06171 \\ -2.37603 & 1.19873 \\ -2.65316 & 0.58796 \\ -1.7651 & 1.98011 \\ -0.27348 & -1.27103 \\ 1.08007 & -0.28354 \\ -0.40065 & 0.36927 \\ 1.71486 & 3.7582 \\ -2.72224 & -3.51298 \end{array}$

С С С С Н Η Cl Cl Ο Н Ν Ν Ρt Η Н Н Η Н Η 0 Н 0 Н С 0 С Н Н Н

[Pt(en)Cl₂(OCOCH₃)₂] (DMSO) (PCM)

18.93229	-0.83354	-0.61573
19.7889	0.19796	-1.30888
15.58711	-1.95422	1.37994
16.08385	-0.61994	1.89606
15.1648	-2.55203	2.1927
15.29125	-0.07569	2.41882
20.29103	-1.80961	3.35545
19.67217	-4.05415	0.84121
18.11216	-1.51513	-1.23506
20.03205	1.02983	-0.64456
16.71552	-2.71026	0.80091
17.21869	-0.87472	2.81684
18.44208	-2.35896	1.94168
14.81094	-1.8116	0.62083
16.45514	0.00582	1.08103
16.98743	-2.40266	-0.14819
16.5592	-3.72499	0.86075
16.90078	-1.23793	3.71796
17.75825	-0.02802	3.00131
17.82621	-3.63322	3.44257
19.2807	0.5591	-2.20529
19.17997	-0.90913	0.66326
20.72782	-0.28182	-1.60897
17.12375	-4.72065	3.25074
16.61864	-5.07492	2.1864
16.9991	-5.54618	4.5089
16.10956	-6.17653	4.45039
16.96333	-4.91568	5.39999
17.88195	-6.1912	4.58692

[Pt(en)Cl₂(OCOCF₃)₂] (water) (PCM)

С	18.93326	-0.93511	-0.67292
С	19.80697	0.16414	-1.34124
С	15.57125	-1.99498	1.35452
С	16.08948	-0.66919	1.87048
Н	15.15743	-2.59559	2.16898
Н	15.3101	-0.12512	2.4125
Cl	20.3064	-1.90679	3.25207
Cl	19.64117	-4.12271	0.75499
0	18.15801	-1.58667	-1.35022
F	19.60333	1.35523	-0.76048
Ν	16.6851	-2.75625	0.74568
Ν	17.23904	-0.93251	2.77145
Pt	18.443	-2.42477	1.87271
Н	14.7834	-1.84045	0.61065

H H H H H O F O F C O C F F F

16.44745	-0.03655	1.055
16.91598	-2.45534	-0.21066
16.50757	-3.76596	0.76667
16.93563	-1.29093	3.67974
17.78582	-0.0879	2.94702
17.84748	-3.7112	3.36855
19.5219	0.28035	-2.63763
19.18026	-0.98328	0.58964
21.10877	-0.13598	-1.22489
17.15183	-4.77787	3.16265
16.61789	-5.18661	2.14901
17.02687	-5.58567	4.48569
16.29622	-6.68552	4.30733
16.44217	-4.84601	5.43967
18.23596	-5.95527	4.93152

[Pt(en)Cl₂(OCOCF₃)₂] (MeOH) (PCM)

С	18.99617	-0.93445	-0.62463
С	19.82218	0.17543	-1.33425
С	15.58841	-2.05046	1.28754
С	16.05379	-0.70272	1.79785
Н	15.16153	-2.64757	2.09799
Н	15.24091	-0.16946	2.30004
Cl	20.24221	-1.8187	3.36116
Cl	19.72249	-4.089	0.87796
0	18.25227	-1.61018	-1.31701
F	20.68151	0.80061	-0.52877
N	16.74178	-2.79261	0.73216
N	17.17554	-0.92045	2.7449
Pt	18.44741	-2.40142	1.91961
Н	14.82326	-1.92899	0.51427
Н	16.42528	-0.07554	0.98403
Н	17.00301	-2.49818	-0.21874
Н	16.58821	-3.80602	0.76198
Н	16.8471	-1.26749	3.64881
Н	17.69619	-0.06003	2.92284
0	17.82285	-3.67791	3.41184
F	18.9862	1.09396	-1.84308
0	19.20794	-0.96427	0.64216
F	20.51397	-0.35881	-2.34877
С	17.15998	-4.76373	3.19728
0	16.6721	-5.19944	2.1718
С	17.00397	-5.55389	4.52774
F	16.31144	-6.6763	4.33867
F	16.35944	-4.81513	5.44369
F	18.20265	-5.88173	5.02938

Pt	-0.58561	0.23401	0.2351
С	-1.98606	-2.24048	-0.75574
С	-3.00599	-3.30896	-0.44536
С	1.80109	-1.07537	-0.99541
С	1.54115	-1.78518	0.33653
С	2.80332	-2.43415	0.90607
С	4.00094	-1.4864	0.9364
С	4.2397	-0.85966	-0.43495
С	2.99356	-0.12525	-0.92783
Cl	-1.72369	0.81827	2.25637
Cl	-2.23674	1.29314	-1.08792
0	-1.52199	-2.09851	-1.8892
Н	-2.91437	-3.66449	0.58315
Ν	0.56116	-0.37343	-1.41938
Ν	0.93824	-0.79249	1.27199
Н	2.00936	-1.84829	-1.74636
Н	0.76977	-2.54755	0.19459
Н	3.03555	-3.29711	0.26844
Н	2.58482	-2.83619	1.90262
Н	3.84818	-0.69302	1.68289
Н	4.88767	-2.0405	1.26424
Н	5.08177	-0.1599	-0.39464
Н	4.51372	-1.64353	-1.15542
Н	2.77507	0.71592	-0.2565
Н	3.16381	0.30627	-1.92062
Н	-0.09397	-0.99259	-1.92544
Н	0.74923	0.49823	-1.93551
Н	1.61346	-0.09992	1.60248
Н	0.54928	-1.25102	2.09792
0	0.48046	1.98492	0.46746
Н	-2.90069	-4.13749	-1.14868
0	-1.68799	-1.51661	0.28883
Н	-4.00503	-2.87367	-0.5648
С	0.90563	2.71425	-0.534
0	0.92386	2.37253	-1.71509
С	1.38449	4.07346	-0.08447
Н	2.07918	4.48342	-0.82011
Н	1.85365	4.02642	0.90093
Н	0.51557	4.73782	-0.01136

cct-[Pt(1,4-DACH)Cl₂(OCOCH₃)₂] (acetone) (PCM)

Pt	-0.04486 -0.36719	-0.03987
0	-2.07595 -0.6704	2 0.16546
Ν	-0.37634 1.2613	5 1.29781
Ν	-0.45953 0.6907	2 -1.84552

Cl	0.43766	-1.52459	1.97854
Cl	0.29718	-2.17685	-1.54137
0	1.87316	0.343	-0.31615
С	-0.61335	2.67268	0.87457
С	-1.00121	2.07981	-1.91028
С	-2.01333	2.87718	0.31157
С	0.4773	3.15398	-0.08984
С	0.05138	3.12454	-1.56486
С	-2.26562	2.22345	-1.0548
С	3.00125	-0.33378	-0.24655
С	4.17879	0.56082	-0.58701
0	3.13061	-1.51308	0.03154
С	-2.70095	-1.80378	0.41114
С	-4.19301	-1.56686	0.55431
0	-2.19609	-2.90634	0.53063
Н	0.44936	1.22548	1.89757
Н	-1.15791	0.93322	1.86941
Н	-1.09916	0.05867	-2.32941
Н	0.428	0.63909	-2.35038
Н	-0.54028	3.24369	1.80886
Н	-1.26903	2.20915	-2.96661
Н	-2.13803	3.96374	0.2268
Н	-2.76711	2.54435	1.03508
Н	1.38121	2.55621	0.05644
Н	0.73761	4.1832	0.17766
Н	-0.39437	4.08917	-1.83713
Н	0.93024	3.00748	-2.21009
Н	-2.98269	2.83808	-1.60855
Н	-2.7307	1.24215	-0.92625
Н	5.11061	0.05868	-0.3197
Н	4.10742	1.521	-0.06851
Н	4.17763	0.76366	-1.66374
Н	-4.71949	-2.52316	0.54077
Н	-4.568	-0.92033	-0.24396
Н	-4.38808	-1.06435	1.50822

cct-Pt(NH₃)₂Cl₂(OCONH^tBu)₂ (DMSO) (PCM)

Pt	0.83561	-0.00368	-1.0648
0	1.02328	2.04578	-0.94977
Cl	-1.44295	0.29536	-0.48265
N	1.20787	-0.21446	0.99846
Cl	0.51078	0.308	-3.39492
N	2.88061	-0.23038	-1.52043
0	0.81017	-2.0582	-1.03502
С	2.03967	2.5742	-0.29129
С	-0.04309	-2.8304	-1.69064
N	2.02939	3.92319	-0.33556
С	2.99926	4.83324	0.29845

O N O

C C C C C C C C

С Η Η Η Н Η Η Н Н Η Н Н Н Η Н Н Η Н Η Н Η Н Н Н Η Н Η

2.91385	1.91254	0.30635
0.22023	-4.16921	-1.55574
-0.98005	-2.44213	-2.38687
2.53742	6.24692	-0.05513
4.40261	4.59395	-0.26468
2.98633	4.65222	1.81863
1.08514	-4.87433	-0.59514
0.91484	-6.36302	-0.90726
0.64035	-4.60314	0.84581
2.55457	-4.4937	-0.78856
1.94818	0.45643	1.23765
1.49612	-1.16914	1.21034
0.35936	-0.0023	1.52338
3.17923	-1.19137	-1.35684
3.39704	0.42547	-0.92239
3.03601	-0.00202	-2.50251
1.26628	4.33769	-0.85308
-0.51519	-4.72862	-1.96768
3.21827	6.98089	0.3871
1.53009	6.44244	0.33218
2.53136	6.40081	-1.14103
5.10894	5.30363	0.18099
4.41021	4.73795	-1.35123
4.74441	3.57923	-0.04286
3.68032	5.36099	2.28468
3.2905	3.63856	2.09381
1.98338	4.83933	2.21918
1.52779	-6.96152	-0.22595
1.22589	-6.58575	-1.93467
-0.12923	-6.67679	-0.78308
1.2731	-5.15311	1.5521
-0.39804	-4.92132	0.99432
0.71037	-3.53722	1.08264
3.18597	-5.12063	-0.14877
2.73276	-3.44907	-0.52242
2.85797	-4.64715	-1.83029

cct-Pt(NH₃)₂Cl₂[OCONH(c-pentyl)]₂ (DMSO) (PCM)

Pt	-0.04384	-0.27352	-0.61885
0	0.74336	1.58234	-0.99264
Ν	-1.85822	0.78779	-0.53752
Cl	-0.08293	-0.19392	1.74156
N	-0.0826	-0.40171	-2.73203
Cl	2.0187	-1.4525	-0.7448
0	-0.89006	-2.15155	-0.55169
С	1.69658	2.19466	-0.30531
С	-2.11534	-2.40365	-0.13094
N	1.84455	3.50131	-0.68573

0 С С С С С Ν С 0 С С С С Н Η Η Н Н Н Н Η Н Η Н Н Η Η Η Η Η Н Η Н Н Η Н Η Н Н

2.38518	1.70422	0.58775
1.24222	4.13355	-1.84107
1.15111	5.6569	-1.68314
1.9929	3.9656	-3.16726
1.03171	6.20788	-3.12044
1.33306	5.01507	-4.06161
-2.27773	-3.71077	0.18447
-3.5533	-4.33022	0.46915
-3.04074	-1.57714	-0.03871
-4.07383	-5.25495	-0.64079
-3.53052	-5.24377	1.69647
-5.10932	-6.15938	0.05515
-4.84646	-6.01682	1.57832
-2.57475	0.05267	-0.37058
-2.04766	1.31794	-1.38633
-1.81971	1.43477	0.24863
-0.96	-0.77663	-3.09147
0.67321	-1.02416	-3.02134
0.08733	0.51924	-3.13751
2.67424	3.93691	-0.30271
0.23567	3.71537	-1.95011
2.07377	6.02063	-1.21035
0.32014	5.95307	-1.03436
1.93174	2.94636	-3.56464
3.0548	4.20236	-3.00763
1.7441	7.02441	-3.28013
0.03472	6.61838	-3.31303
1.95814	5.29928	-4.91468
0.39736	4.61236	-4.47022
-1.47188	-4.3083	0.05213
-4.26137	-3.51219	0.63581
-3.23317	-5.85182	-1.01968
-4.48427	-4.69589	-1.4886
-3.43138	-4.68788	2.63506
-2.6722	-5.92677	1.61981
-5.0058	-7.1983	-0.27523
-6.13169	-5.85184	-0.19009
-4.80635	-6.98456	2.08886
-5.65421	-5.442	2.04745

cct-Pt(NH₃)₂Cl₂[OCONH(c-hexyl)]₂ (DMSO) (PCM)

DL	0 07060	0 0110	0 70000
Pt	-0.0/968	-0.3116	-0./9098
0	0.69925	1.55853	-1.09986
Ν	-1.88582	0.74983	-0.60188
Cl	-0.04087	-0.33583	1.57096
Ν	-0.19015	-0.34586	-2.90518
Cl	1.97483	-1.48533	-1.04125
0	-0.9208	-2.19254	-0.78153

C C N O

C C C C C

N C C C C C

C C C

Η Η Η Н Н Н Н Η Н Η Н Η Н Н Η Н Н Η Η Н Н Н Н Н Н Η Н Н Η Η

1.69326	2.1216	-0.42736
-2.15571	-2.46466	-0.40294
1.8481	3.4428	-0.75038
2.40819	1.57644	0.41161
1.22544	4.13678	-1.86772
1.12937	5.62939	-1.55261
1.97155	3.90628	-3.18623
1.3235	4.67487	-4.33755
0.48748	6.40247	-2.70456
-2.35277	-3.79479	-0.25349
1.22607	6.16635	-4.02114
-3.62209	-4.40179	0.10916
-3.06661	-1.63478	-0.22661
-3.9238	-5.59321	-0.80072
-3.6445	-4.81503	1.58373
-5.24737	-6.25886	-0.42375
-4.97004	-5.47899	1.9559
-5.26929	-6.67032	1.04749
-2.60208	0.00805	-0.46511
-2.08971	1.33316	-1.41157
-1.82549	1.34563	0.22245
-1.08183	-0.69966	-3.25071
0.55078	-0.95976	-3.2465
-0.02739	0.59052	-3.27668
2.70196	3.84334	-0.38231
0.20991	3.73435	-1.9632
2.1421	6.02266	-1.37092
0.56027	5.77151	-0.62522
2.004	2.83133	-3.40481
3.01313	4.23973	-3.06057
1.89273	4.51466	-5.26203
0.31378	4.2757	-4.51829
0.46386	7.47303	-2.46483
-0.55977	6.08293	-2.81452
-1.54171	-4.39009	-0.35701
0.72203	6.69748	-4.83882
2.24017	6.58761	-3.94844
-4.3825	-3.62897	-0.05187
-3.10819	-6.32755	-0.7107
-3.94073	-5.26008	-1.84614
-3.46018	-3.93367	2.21093
-2.81666	-5.5173	1.76521
-5.42126	-7.12946	-1.06863
-6.07247	-5.55656	-0.61568
-4.94709	-5.79334	3.00701
-5.78249	-4.74201	1.86686
-6.24216	-7.10916	1.30365
-4.51491	-7.45359	1.21648

cct-Pt(NH₃)₂Cl₂(OCONHPh)₂ (DMSO) (PCM)

Pt	0.67311	-1.21827	0.06264
Cl	2.73087	-0.0361	0.1142
Cl	-0.62591	0.76709	-0.01119
0	0.76814	-1.14174	-1.98927
0	0.6296	-1.07981	2.11304
Ν	1.77495	-3.01085	0.12683
Ν	-1.12151	-2.31777	0.01878
С	0.53839	-2.21407	-2.71356
С	0.35079	-2.13012	2.85222
Ν	0.65371	-1.9387	-4.04463
0	0.2535	-3.3343	-2.26138
С	0.49093	-2.79138	-5.14732
С	0.67432	-2.22344	-6.41706
С	0.16217	-4.14901	-5.04326
С	0.02273	-4.91276	-6.20214
С	0.20424	-4.3516	-7.46481
Ν	0.37679	-1.81471	4.17914
С	0.53173	-2.99839	-7.56279
С	0.13918	-2.63389	5.29357
0	0.09587	-3.26376	2.41585
С	0.23803	-2.02791	6.5551
С	-0.18407	-3.99417	5.20858
С	-0.40205	-4.72274	6.37796
С	0.01773	-2.76807	7.71147
С	-0.30464	-4.12375	7.6325
Н	1.5381	-3.54609	-0.71514
Н	1.48142	-3.52074	0.96668
Н	2.77564	-2.81833	0.15765
Н	-1.92646	-1.69317	-0.01773
Н	-1.15017	-2.89104	0.8685
Н	-1.09359	-2.91639	-0.81331
Н	0.89144	-0.97817	-4.25522
Н	0.92985	-1.16928	-6.50442
Н	0.01895	-4.595	-4.06763
Н	-0.23271	-5.96537	-6.10715
Н	0.09265	-4.95771	-8.35961
Н	0.60073	-0.84801	4.3762
Н	0.67826	-2.53824	-8.53662
Н	0.48886	-0.9715	6.62765
Н	-0.26231	-4.46941	4.23941
Н	-0.65225	-5.77784	6.29776
Н	0.09944	-2.27874	8.67866
Н	-0.4769	-4.70269	8.53563

Pt(1,2-DACH)₂(OH)₂(oxalate)₂ (DMF) (PCM) 6-31G(d,p)(E)

Pt C C C

C C C C

С 0 0 0 0 Ν Ν Η Η Н Η Н Η Н Η Н Η Η Η Η Н 0 Н 0 Н

0	-0	.43283	-0.04052	0.11348
() –	3.03919	0.8939	6 -0.4486
() –	3.18333	-0.6241	3 -0.16972
(C	2.37958	-0.9418	0.53567
(C	2.34718	0.5436	4 0.89864
(C	3.70347	1.2100	5 0.66917
(C	4.26135	0.9395	2 -0.72776
(C	4.30122	-0.5573	8 -1.02772
(C	2.92254	-1.1980	3 -0.8662
() –	1.82308	1.3793	6 -0.37182
() –	2.07601	-1.2611	5 0.12324
() –	4.01063	1.5677	2 -0.72223
() –	4.27068	-1.1608	9 -0.22277
(C	0.9967	-1.4716	3 0.67862
(C	1.26241	1.1826	6 0.10449
(C	3.0169	-1.4537	4 1.26661
(C	2.04097	0.6503	4 1.94352
(C	4.39286	0.8117	9 1.42339
(C	3.6178	2.2846	3 0.8638
(C	3.65837	1.4533	1 -1.4893
(C	5.26494	1.3698	6 -0.80274
(C	4.66835	-0.7334	1 -2.04348
(C	5.01152	-1.0447	2 -0.34647
(C	2.21965	-0.8054	7 -1.61219
(C	2.98399	-2.2799	5 -1.03016
(C	0.76249	-1.6109	8 1.66339
(C	0.88281	-2.3583	6 0.18928
(C	1.49939	1.2612	3 -0.88623
(C	1.05408	2.1165	3 0.45462
() –	0.07904	-0.3035	1 -1.87403
(- C	0.66642	0.3329	2 -2.30235
(- C	0.6249	0.2271	1 2.12261
() –	1.43662	-0.2387	3 2.36087

Pt(NH₃)₂Cl₂(OH)₂ (water) (PCM) 6-31G(d,p)(E)

Pt	0	0.46988	-0.05956	0.04109
0	0	0.48987	-0.29268	-1.98382
Ν	0	1.852	1.50376	-0.20439
0	0	0.74942	0.18336	2.04554
Ν	0	1.97174	-1.52807	0.08985
Н	0	2.46814	1.35912	-1.00065
Н	0	2.39303	1.6064	0.65157
Н	0	1.31331	2.35491	-0.35387
Н	0	1.51501	-2.41199	0.30682
Н	0	2.67906	-1.34006	0.79619
Н	0	2.39768	-1.59877	-0.83183
Н	0	-0.37312	-0.66344	-2.20512
Н	0	-0.09791	0.49783	2.3837

S63

Cl	0	-1.22985	1.59332	-0.00709
Cl	0	-1.09586	-1.81979	0.31219

Pt(^{*i***}PrNH₂)₂Cl₂(OH)₂ (water) (PCM) 6-31G(d,p)(E)**

Pt	0	-0.17734	0.31731	-0.20533
0	0	1.83349	0.67308	-0.19148
N	0	0.25532	-0.69004	1.61184
0	0	-2.14406	-0.23004	-0.16345
Ν	0	0.04096	-1.40937	-1.41321
Н	0	0.68307	0.076	2.13324
Н	0	1.00721	-1.35342	1.42251
С	0	-0.81738	-1.31701	2.42703
С	0	1.35265	-2.09667	-1.56314
Н	0	-0.29722	-1.09002	-2.32284
Н	0	-0.67671	-2.03399	-1.04598
H	0	1.90912	1.60735	0.04082
Н	0	0.54016	-2.30768	3.80736
Cl	0	-0.50412	2.24904	1.15152
Cl	0	-0.58354	1.51106	-2.2255
С	0	-0.28075	-1.5829	3.82958
С	0	-1.3282	-2.57871	1.75404
Н	0	-1.62189	-0.57732	2.47173
С	0	2.20064	-1.35742	-2.58295
С	0	1.11813	-3.55536	-1.93601
H	0	1.84865	-2.04748	-0.58817
H	0	-1.07952	-1.99488	4.45235
H	0	0.07762	-0.66496	4.30555
H	0	-2.56891	0.37469	-0.78532
H	0	-2.06465	-3.06219	2.40113
Н	0	-0.51566	-3.29505	1.58529
Н	0	-1.82102	-2.34116	0.8089
Н	0	3.17687	-1.84248	-2.66398
H	0	2.34725	-0.3214	-2.27155
H	0	1.7292	-1.38437	-3.57212
H	0	2.08041	-4.06774	-2.02008
H	0	0.6047	-3.63583	-2.89981
H	0	0.52461	-4.07605	-1.17777
Pt(hpip)₂Cl₂(OH)₂ (water) (PCM) 6-31G(d,p)(E)				

Pt	0	-0.05128	-0.36498	0.02145
Cl	0	1.45534	0.72564	-1.46809
Cl	0	1.17489	0.36846	1.92831
Ν	0	-1.53782	-1.47579	1.07315
С	0	-1.57138	-2.8079	0.41657
С	0	-1.43894	-2.64863	-1.11057
Ν	0	-1.32529	-1.21082	-1.46561

С C C 0 0 Η Н Η Н Η Η Η Η Н Η Η Η Η Н

0	-2.6333	-0.51059	-1.51314
0	-3.51176	-0.87415	-0.32051
0	-2.84624	-0.77547	1.04827
0	-1.19741	1.32935	0.09823
0	1.05915	-2.08302	-0.06087
0	-1.21781	-1.57122	2.03584
0	-2.49607	-3.31882	0.70192
0	-0.72052	-3.37236	0.7913
0	-0.52399	-3.1346	-1.4423
0	-2.28932	-3.07952	-1.64787
0	-0.85072	-1.11065	-2.36182
0	-3.13842	-0.80588	-2.4392
0	-2.42017	0.55907	-1.53531
0	-3.92359	-1.87936	-0.45863
0	-4.37244	-0.19923	-0.32229
0	-2.65655	0.26324	1.32256
0	-3.49156	-1.24287	1.79992
0	-0.54899	2.03825	0.19162
0	1.95602	-1.77771	0.1202

Pt(mhpip)₂Cl₂(OH)₂ (water) (PCM) 6-31G(d,p)(E)

Pt	0	0.00852	-0.35915	-0.02811
Cl	0	1.46165	0.62937	-1.63987
Cl	0	1.36656	0.50359	1.73795
Ν	0	-1.47126	-1.45105	1.11884
С	0	-1.53146	-2.77841	0.44239
С	0	-1.43399	-2.64352	-1.08707
Ν	0	-1.29384	-1.21754	-1.46728
С	0	-2.58773	-0.49675	-1.5217
С	0	-3.45454	-0.83941	-0.3175
С	0	-2.77512	-0.73069	1.04184
С	0	-1.07138	-1.61322	2.52707
0	0	-1.11718	1.35034	0.04906
0	0	1.09753	-2.09076	-0.08899
Н	0	-2.45131	-3.28233	0.75839
Н	0	-0.67696	-3.35109	0.79839
Н	0	-0.53865	-3.15688	-1.43012
Н	0	-2.3065	-3.06234	-1.59789
Н	0	-0.81509	-1.13972	-2.36363
Н	0	-3.10265	-0.79523	-2.44146
Н	0	-2.36074	0.56972	-1.56013
Н	0	-3.88027	-1.84062	-0.44053
Н	0	-4.30761	-0.15459	-0.31204
Н	0	-2.56877	0.31084	1.29336
Н	0	-3.43225	-1.16876	1.80268
Н	0	-1.77786	-2.28346	3.02968
Н	0	-1.07949	-0.638	3.01369
Н	0	-0.06542	-2.02995	2.56692

Н	0	-0.4882	2.0163	0.35424
Н	0	2.00669	-1.78096	-0.1781
	Pt(c	lmhpip) ₂ Cl ₂ (O	H) ₂ (water)	
		(PCM) 6-31G(a	1,p)(E)	
Pt	0	-0.46261	0.00013	-0.00727
Cl	0	-2.18552	1.64688	-0.17413
Cl	0	-2.18109	-1.65122	-0.17692
Ν	0	1.23556	-1.32303	0.20686
С	0	1.9917	-0.76036	1.35749
С	0	1.99332	0.7746	1.3497
N	0	1.23457	1.32642	0.19556
С	0	2.03585	1.28572	-1.05936
С	0	2.82553	-0.00389	-1.22008
С	0	2.03831	-1.29335	-1.0473
С	0	0.82696	-2.70733	0.50324
С	0	0.82544	2.71295	0.48016
0	0	-0.28707	-0.00738	-2.04836
0	0	-0.59233	0.00695	2.03493
Н	0	3.00432	-1.17808	1.3399
Н	0	1.48802	-1.10195	2.26001
Н	0	1.49281	1.1259	2.25009
Н	0	3.00664	1.19018	1.3242
Н	0	2.73441	2.13051	-1.02715
Н	0	1.33494	1.42678	-1.88385
Н	0	3.68623	0.00012	-0.54342
H	0	3.2453	-0.0082	-2.23061
Н	0	1.33806	-1.44275	-1.87084
Н	0	2.73822	-2.13661	-1.00584
Н	0	1.7175	-3.29938	0.74248
Н	0	0.32807	-3.12793	-0.36941
Н	0	0.13939	-2.70477	1.34824
Н	0	1.71592	3.30796	0.71217
Н	0	0.13973	2.71741	1.32669
Н	0	0.32431	3.12538	-0.39512
Н	0	-1.20365	-0.04566	-2.34883
Н	0	-1.54039	0.07286	2.20028

Pt(1,4-DACH)₂(OH)₂Cl₂ (water) (PCM) 6-31G(d,p)(E)

Pt	0	0.46517	0.34396	-0.21232
0	0	0.60241	0.5973	1.81003
Ν	0	-1.16606	1.67806	-0.0949
Ν	0	-0.60635	-1.45602	0.04544
Cl	0	1.75727	2.31664	-0.57164
Cl	0	2.38002	-1.07592	-0.29813
0	0	0.13765	0.05782	-2.20826
С	0	-2.59174	1.24833	-0.09643
С	0	-2.03968	-1.51909	0.44396

С С C C Η Η Н Η Н Η Н Η Н Η Η Η Η Н Η Н

0	-3.00472	0.70369	1.26444
0	-2.85883	0.24484	-1.22811
0	-2.95337	-1.20313	-0.73268
0	-2.31197	-0.60857	1.65054
0	1.48841	0.95536	1.94633
0	-0.99147	2.30808	-0.87686
0	-0.94533	2.18898	0.76183
0	-0.03401	-1.95732	0.72365
0	-0.46514	-1.9045	-0.86157
0	1.02252	0.00502	-2.59037
0	-3.16006	2.16666	-0.28471
0	-2.20326	-2.56358	0.73388
0	-4.08867	0.55146	1.21185
0	-2.84274	1.45898	2.04129
0	-2.07291	0.33658	-1.98369
0	-3.80049	0.51067	-1.71642
0	-3.97217	-1.41336	-0.38809
0	-2.76398	-1.89785	-1.55832
0	-2.94901	-1.14653	2.35809
0	-1.36927	-0.40235	2.16606

Pt(1,4-DACH)₂(OH)₂Cl₂ (DMF) (PCM) 6-31G(d,p)(E)

Pt	0	0.46495	0.34392	-0.21229
0	0	0.60049	0.59884	1.80992
Ν	0	-1.16654	1.67839	-0.0961
Ν	0	-0.60636	-1.45643	0.04671
Cl	0	1.7558	2.31566	-0.57551
Cl	0	2.37938	-1.07531	-0.29397
0	0	0.13643	0.05574	-2.20772
С	0	-2.59198	1.24833	-0.09745
С	0	-2.03963	-1.51913	0.44501
С	0	-3.00497	0.70432	1.26372
С	0	-2.85833	0.24382	-1.22849
С	0	-2.9532	-1.20378	-0.73195
С	0	-2.31176	-0.60743	1.65082
Н	0	1.49377	0.93698	1.94929
Н	0	-0.99137	2.30715	-0.87891
Н	0	-0.94536	2.19003	0.76008
Н	0	-0.03369	-1.95631	0.72566
Н	0	-0.46436	-1.90542	-0.85992
Н	0	1.02054	0.02399	-2.5938
Н	0	-3.16107	2.16609	-0.28644
Н	0	-2.2039	-2.5633	0.73584
Н	0	-4.0889	0.55172	1.21113
Н	0	-2.84329	1.46006	2.04021
Н	0	-2.07171	0.3349	-1.98345
Н	0	-3.79964	0.50912	-1.71784

Н	0	-3.9721	-1.41364	-0.38736
Н	0	-2.76383	-1.89901	-1.55719
Н	0	-2.94838	-1.14472	2.3593
Н	0	-1.3688	-0.40038	2.1656

Output file for NMR calculation of [PtCl₄]²⁻

Entering Link 1 = C:\G03W\l1.exe PID= 6248.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc.

All Rights Reserved.

This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc.

This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license.

The following legend is applicable only to US Government contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19.

Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492

Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above.

Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ***** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 17-Jan-2014 %chk=PtCl4 2-PBE0 SARCZORANMR %nproc=2 Will use up to 2 processors via shared memory. %mem=800mb _____ #p PBE1PBE/gen nmr=giao integral(ultrafine) SCRF(solvent=water) SCF (No VarAcc,maxcycles=1000) _____ _____ 1/38=1/1;

```
2/17=6,18=5,40=1/2;
3/5=7,11=2,16=1,25=1,30=1,70=2201,72=1,74=-13,75=5/1,2,8,3;
4//1;
5/5=2,7=1000,38=1,53=1/2;
8/6=1,10=90,11=11/1;
10/13=100,45=16/2;
6/7=2,8=2,9=2,10=2,28=1/1;
99/9=1/99;
Leave Link 1 at Fri Jan 17 09:22:40 2014, MaxMem= 104857600
cpu: 0.0
 (Enter C:\G03W\l101.exe)
_____
PtCl4_2-PBE0_SARCZORANMR
_____
Symbolic Z-matrix:
Charge = -2 Multiplicity = 1
                  0.
                           Ο.
                                    0.
Ρt
Cl
                   0.
                          2.4384 0.
                   2.4384 0.
Cl
                                    0.
                          Ο.
Cl
                  -2.4384
                                    0.
Cl
                   0.
                           -2.4384
                                    0.
                 Isotopes and Nuclear Properties:
 (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic
moments (NMagM)
 in nuclear magnetons)
                      2
                                                     5
 Atom
            1
                                 3
                                           4
IAtWqt=
             195
                         35
                                   35
                                              35
35
AtmWgt= 194.9648000 34.9688527 34.9688527 34.9688527
34.9688527
                          3
                                               3
NucSpn=
                1
                                    3
3
        0.0000000 0.0000000 0.0000000
AtZEff=
                                      0.000000
0.0000000
         0.0000000 -8.1650000 -8.1650000 -8.1650000 -
NOMom=
8.1650000
       0.6095000 0.8218740 0.8218740 0.8218740
NMaqM=
0.8218740
Leave Link 101 at Fri Jan 17 09:22:40 2014, MaxMem= 104857600
cpu: 0.0
 (Enter C:\G03W\1202.exe)
                      Input orientation:
_____
____
Center
        Atomic Atomic
                                   Coordinates
(Angstroms)
Number Number Type
                            Х
                                              Υ
Ζ
```

S70

1 0.000000	78	0	0.000000	0.00000	
2	17	0	0.00000	2.438400	
3	17	0	2.438400	0.00000	
0.000000 4	17	0	-2.438400	0.000000	
0.000000 5	17	0	0.00000	-2.438400	
0.000000					
	-	atongo mata	in (angetneme)		
1 Pt 2 Cl	1 0.000000 2.438400	0.000000	3	4	5
3 Cl 4 Cl 5 Cl Stoichiomet	2.438400 2.438400 2.438400 try Cl4E	3.448418 3.448418 4.876800	0.000000 4.876800 0. 3.448418 3.	.000000 .448418 0.	000000
Framework of Deg. of fre Full point Largest Abe	group D4H eedom 1 group elian subgr	CO(Pt),2C2'(Cl.Cl)] D4H D2H NOp	8	
Largest com	ncise Abeli	an subgroup. Standard	D2 NOp orientation:	4	
Center Atomic Atomic			Coord	dinates	
(Angstroms) Number Z	Number	Туре	Х	Y	
1 0.000000	78	0	0.00000	0.00000	
2	17	0	0.00000	2.438400	
3	17	0	2.438400	0.000000	
0.000000	17	0	-2.438400	0.000000	
U.UUUU000 5 0.000000	17	0	0.000000	-2.438400	
 Rotational 0.6076674	constants	(GHZ):	1.2153348	1.2153348	

Exponent=

Exponent=

Leave Link 202 at Fri Jan 17 09:22:41 2014, MaxMem= 104857600 0.0 cpu: (Enter C:\G03W\l301.exe) General basis read from cards: (5D, 7F) Centers: 1 S 6 1.00 Exponent= 1.6896015676D+06 Coefficients= 5.7974482200D-02 Exponent= 7.5093403004D+05 Coefficients= -1.3148538600D-02 3.3374845779D+05 Coefficients= 1.2503763310D-01 Exponent= Exponent= 1.4833264791D+05 Coefficients= 9.1535752600D-02 6.5925621293D+04 Coefficients= 3.2913880880D-01 Exponent= Exponent= 2.9300276130D+04 Coefficients= 5.3748713720D-01 S 1 1.00 1.3022344947D+04 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 5.7877088650D+03 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 2.5723150510D+03 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 Exponent= 1.1432511340D+03 Coefficients= 1.000000000D+00 S 1 1.00 5.0811161500D+02 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 2.2582738400D+02 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 Exponent= 1.0036772600D+02 Coefficients= 1.000000000D+00 S 1 1.00 4.4607878000D+01 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 1.9825724000D+01 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 8.8114330000D+00 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 Exponent= 3.9161920000D+00 Coefficients= 1.000000000D+00 S 1 1.00 1.740530000D+00 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 7.735690000D-01 Coefficients= Exponent= 1.000000000D+00 S 1 1.00 3.438080000D-01 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 1.528040000D-01 Coefficients= 1.000000000D+00 Exponent= S 1 1.00 6.791300000D-02 Coefficients= 1.000000000D+00 Exponent= P 5 1.00 2.3642643991D+04 Coefficients= Exponent= 1.1403826400D-02 Exponent= 9.4570575960D+03 Coefficients= 1.7083256700D-02 3.7828230390D+03 Coefficients= Exponent= 8.0886502700D-02

1.5131292150D+03 Coefficients=

6.0525168600D+02 Coefficients=

2.5252184340D-01

7.4017959180D-01
P 1 1.00			
Exponent=	2.4210067400D+02	Coefficients=	1.000000000D+00
P 1 1.00			
Exponent=	9.6840270000D+01	Coefficients=	1.0000000000D+00
P I I.UU Evponent-	3 8736108000D+01	Coefficients-	1 0000000000000+00
P 1 1.00	5.07501000000101	COETTICIENCS-	1.0000000000000000000000000000000000000
Exponent=	1.5494443000D+01	Coefficients=	1.0000000000D+00
P 1 1.00			
Exponent=	6.1977770000D+00	Coefficients=	1.000000000D+00
P 1 1.00			
Exponent=	2.4791110000D+00	Coefficients=	1.0000000000D+00
P I I.UU Evponent-	0 01611000000-01	Coefficients-	1 000000000000+00
P 1 1.00	J.JI04400000D 01	COETTICIENCS-	1.0000000000000000000000000000000000000
Exponent=	3.9665800000D-01	Coefficients=	1.0000000000D+00
P 1 1.00			
Exponent=	1.5866300000D-01	Coefficients=	1.000000000D+00
P 1 1.00			1 0000000000000000000000000000000000000
Exponent=	6.3465000000D-02	Coefficients=	1.000000000D+00
D 4 I.UU Evponent=	1 81107924600+03	Coefficients=	7 68590380000-03
Exponent=	6.5857427100D+02	Coefficients=	4.3883054800D-02
Exponent=	2.3948155300D+02	Coefficients=	2.4558000620D-01
Exponent=	8.7084201000D+01	Coefficients=	8.0580963240D-01
D 1 1.00	0.,0012010002.01	000111010100	0.0000000000000000000000000000000000000
Exponent=	3.1666982000D+01	Coefficients=	1.000000000D+00
D 1 1.00			
Exponent=	1.1515266000D+01	Coefficients=	1.000000000D+00
D 1 1.00	4 10727000000 00	Coofficients-	1 0000000000000000000000000000000000000
Exponent=	4.18/3/0000000+00	coefficients=	1.0000000000000000000000000000000000000
Exponent=	1.5226800000D+00	Coefficients=	1.0000000000D+00
D 1 1.00			
Exponent=	5.5370200000D-01	Coefficients=	1.0000000000D+00
D 1 1.00			
Exponent=	2.0134600000D-01	Coefficients=	1.000000000D+00
	7 2017000000 00		1 0000000000000000000000000000000000000
Exponent=	7.3217000000D-02	Coefficients=	1.0000000000000000000000000000000000000
Exponent=	8.5141859000D+01	Coefficients=	6.3002593000D-02
Exponent=	2 838062000D+01	Coefficients=	2 94244982800-01
Exponent=	9 46020700000+00	Coefficients=	5 6544272570D-01
Exponent=	3 153402000000+00	Coefficients=	3 77604816000-01
F 1 1.00	5.1051020000100		C.,, COTOTOUDD OT
Exponent=	1.0511340000D+00	Coefficients=	1.000000000D+00
F 1 1.00			
Exponent=	3.5037800000D-01	Coefficients=	1.000000000D+00

centers: 2	343		

6-31+G(d)**** 55 symmetry adapted basis functions of AG There are symmetry. 18 symmetry adapted basis functions of B1G There are symmetry. 14 symmetry adapted basis functions of B2G There are symmetry. There are 14 symmetry adapted basis functions of B3G symmetry. 5 symmetry adapted basis functions of AU There are symmetry. 27 symmetry adapted basis functions of B1U There are symmetry. 33 symmetry adapted basis functions of B2U There are symmetry. 33 symmetry adapted basis functions of B3U There are symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 199 basis functions, 417 primitive gaussians, 220 cartesian basis functions 74 alpha electrons 74 beta electrons nuclear repulsion energy 1391.1768971787 Hartrees. IExCor=1009 DFT=T Ex=PBE+HF Corr=PBE ExCW=0 ScaHFX= 0.250000 ScaDFX= 0.750000 0.750000 1.000000 1.000000 IRadAn= 5 IRanWt= -1 IRanGd= 0 ICorTp=0 NAtoms= 5 NActive= 5 NUniq= 2 SFac= 3.00D+00 NAtFMM= 80 NAOKFM=F Big=F _____ _____ United Atom Topological Model (UA0 parameters set). Nord Group Hybr Charge Alpha Radius Bonded to 1 Pt * 0.00 1.00 1.377 Cl2 [s] Cl3 [s] Cl4 [s] Cl5 [s] 2 Cl * 0.00 1.00 1.973 Pt1 [s] 3 Cl * 0.00 1.00 1.973 Pt1 [s] * 0.00 1.00 1.973 Pt1 * 0.00 1.00 1.973 Pt1 4 Cl [s] * 5 Cl [s] _____ _____ Polarizable Continuum Model (PCM) _____ Model : PCM. Atomic radii : UAO (Simple United Atom Topological Model). Polarization charges : Total charges. Charge compensation : None. Solution method : Matrix inversion.

: GePol (RMin=0.200 OFac=0.890). Cavity Default sphere list used, NSphG= 5. Tesserae with average area of 0.200 Ang**2. Solvent : Water, Eps = 78.390000 Eps(inf) = 1.776000RSolv = 1.385000 Ang. _____ _____ _____ Using symmetry in molecular cavity generation. GePol: Number of tesserae being generated 1720 = GePol: Average area of tesserae = 0.09 Ang**2 GePol: Minimum area of tessera = 0.15D-02 Ang**2 GePol: Maximum area of tessera 0.19991 = Ang**2 GePol: Number of small tesserae 0 = GePol: Fraction of small tesserae (<1% of avg) = 0.00% GePol: Total count of vertices = 6464 GePol: Maximum number of vertices in a tessera = 8 GePol: Cavity surface area 154.292 = Ang**2 GePol: Cavity volume = 135.840 Ang**3 DisRep: Neglecting contributions from atom 1 Leave Link 301 at Fri Jan 17 09:22:42 2014, MaxMem= 104857600 cpu: 1.0 (Enter C:\G03W\1302.exe) NPDir=0 NMtPBC= 1 NCelov= 1 NCel= 1 NClECP= 1 NCelD= 1 NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0. One-electron integrals computed using PRISM. One-electron integral symmetry used in STVInt NBasis= 199 RedAO= T NBF= 55 18 14 5 27 14 33 33 NBsUse= 199 1.00D-06 NBFU= 55 18 14 14 5 27 33 33 Precomputing XC quadrature grid using IXCGrd= 2 IRadAn= 5 IRanWt= -1 IRanGd= 0. Defaulting to unpruned grid for atomic number 78. NRdTot= 407 NPtTot= 132060 NUsed= 133903 NTot= 133919 207 207 207 207. NSqBfM= Leave Link 302 at Fri Jan 17 09:22:43 2014, MaxMem= 104857600 0.0 cpu: (Enter C:\G03W\l308.exe)

```
Leave Link 308 at Fri Jan 17 09:22:44 2014, MaxMem= 104857600
           0.0
cpu:
 (Enter C:\G03W\1303.exe)
 DipDrv: MaxL=1.
Leave Link 303 at Fri Jan 17 09:22:44 2014, MaxMem= 104857600
cpu:
           0.0
 (Enter C:\G03W\1401.exe)
 Harris functional with IExCor= 1009 diagonalized for initial
quess.
 ExpMin= 4.83D-02 ExpMax= 1.69D+06 ExpMxC= 1.69D+06 IAcc=4
          199590 AccDes= 0.00D+00
IRadAn=
 HarFok: IExCor=1009 AccDes= 0.00D+00 IRadAn=
                                                   199590 IDoV=1
 ScaDFX= 1.000000 1.000000 1.000000
 Harris En= -19167.4255278408
 Initial guess orbital symmetries:
                (A1G) (A1G) (EU) (EU) (A2U) (A1G) (B1G) (EU)
       Occupied
(EU)
                 (A1G) (EU) (EU) (A2U) (B1G) (B2G) (EG) (EG)
(A1G)
                 (A1G) (EU) (EU) (A2U) (B1G) (B2G) (EG) (EG)
(A1G)
                 (A1G) (B1G) (EU) (EU) (B1G) (EU) (EU) (A1G)
(A2G)
                 (EU) (EU) (B2G) (B2U) (EG) (EG) (A2U) (A1G) (EU)
                 (EU) (B2U) (B1U) (EU) (EU) (A2U) (EU) (EU) (A2U)
                 (A1G) (B1G) (EU) (EU) (A1G) (B1G) (B2G) (EU)
(EU)
                 (EG) (EG) (A2U) (B2U) (EU) (EU) (A2G) (A1G)
(B2G)
                 (EG) (EG)
       Virtual
                 (B1G) (A1G) (A2U) (EU) (EU) (B1G) (A1G) (B2G)
                 (EG) (EG) (A2U) (A1G) (EU) (EU) (EU) (EU) (B2U)
                 (A2G) (B1G) (A1G) (EG) (EG) (EU) (EU) (B2G)
(A2U)
                 (EU) (EU) (A1G) (B1G) (B1G) (A1G) (B2G) (A2U)
                 (EU) (EU) (B2U) (EU) (EU) (EG) (EG) (B2U) (B1G)
                 (EU) (EU) (EG) (EG) (A2G) (EU) (EU) (A2U) (B2G)
                 (A1G) (B1U) (A1U) (EU) (EU) (EG) (EG) (A2G)
(A1G)
                 (B1G) (A1G) (B1U) (EU) (EU) (EG) (EG) (B1G)
(A2U)
                 (B2G) (EU) (EU) (B2U) (A1G) (EU) (EU) (B1G)
(A2U)
                 (A1G) (EU) (EU) (B1U) (EU) (EU) (A2U) (B2U) (EU)
                 (EU) (EG) (EG) (A1G) (B2G) (B1G) (A1G) (A2U)
(EU)
                 (EU) (EG) (EG) (B2G) (A1G) (B1G) (A1G) (A2U)
(EU)
                 (EU) (EG) (EG) (B2G) (A1G) (B1G) (A1G) (A2U)
(EU)
```

(EU) (A1G) (A2U) (EU) (EU) (A1G) (A1G) (A1G) (A1G) (A1G) The electronic state of the initial guess is 1-A1G. Leave Link 401 at Fri Jan 17 09:22:46 2014, MaxMem= 104857600 cpu: 1.0 (Enter C:\G03W\1502.exe) Closed shell SCF: Requested convergence on RMS density matrix=1.00D-08 within1000 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Using DIIS extrapolation, IDIIS= 1040. Integral symmetry usage will be decided dynamically. 133902 words used for storage of precomputed grid. 1299438 IEndB= 1299438 NGot= 104857600 MDV= 104608783 IEnd= LenX= 104608783 Fock matrices will be formed incrementally for 20 cycles. Cycle 1 Pass 1 IDiag 1: Petite list used in FoFDir. MinBra= 0 MaxBra= 3 Meth= 1. 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F IRaf= ISym2E= 1 JSym2E=1. Defaulting to unpruned grid for atomic number 78. Defaulting to unpruned grid for atomic number 78. E= -19152.4955574018 DIIS: error= 1.81D+00 at cycle 1 NSaved= 1. NSaved= 1 IEnMin= 1 EnMin= -19152.4955574018 IErMin= 1 ErrMin= 1.81D+00 ErrMax= 1.81D+00 EMaxC= 1.00D-01 BMatC= 3.09D+02 BMatP= 3.09D+02 IDIUse=3 WtCom= 0.00D+00 WtEn= 1.00D+00 Coeff-Com: 0.100D+01 Coeff-En: 0.100D+01 Coeff: 0.100D+01 -0.454 Goal= None Shift= 0.000 Gap= -0.454 DampG=0.250 DampE=0.125 DampFc=0.1250 IDamp=-1. GapD= Damping current iteration by 1.25D-01 RMSDP=1.34D-02 MaxDP=4.47D-01 OVMax= 9.06D-01 Cycle 2 Pass 1 IDiag 1: RMSU= 1.65D-03 CP: 1.01D+00 E = -19153.1337740957-0.638216693878 Rises=F Delta-E= Damp=T DIIS: error= 1.57D+00 at cycle 2 NSaved= 2. NSaved= 2 IEnMin= 2 EnMin= -19153.1337740957 IErMin= 2 ErrMin= 1.57D+00 ErrMax= 1.57D+00 EMaxC= 1.00D-01 BMatC= 2.25D+02 BMatP= 3.09D+02 IDIUse=3 WtCom= 0.00D+00 WtEn= 1.00D+00

```
Coeff-Com: -0.553D+01 0.653D+01
 Coeff-En:
            0.000D+00 0.100D+01
            0.000D+00 0.100D+01
 Coeff:
         0.017 Goal= None
 Gap=
                              Shift=
                                       0.000
 RMSDP=8.61D-03 MaxDP=3.05D-01 DE=-6.38D-01 OVMax= 1.44D-01
       3 Pass 1
                  IDiag 1:
 Cvcle
 RMSU= 6.10D-03
                   CP: 1.03D+00 3.00D+00
 E= -19153.3421198504
                        Delta-E=
                                       -0.208345754658 Rises=F
Damp=F
 DIIS: error= 3.64D-01 at cycle 3 NSaved=
                                            3.
NSaved= 3 IEnMin= 3 EnMin= -19153.3421198504
                                                IErMin= 3
ErrMin= 3.64D-01
 ErrMax= 3.64D-01 EMaxC= 1.00D-01 BMatC= 1.46D+01 BMatP= 2.25D+02
 IDIUse=3 WtCom= 0.00D+00 WtEn= 1.00D+00
 EnCoef did
             100 forward-backward iterations
 Coeff-Com: 0.657D+01-0.740D+01 0.183D+01
 Coeff-En:
            0.398D+00 0.220D-01 0.580D+00
            0.398D+00 0.220D-01 0.580D+00
 Coeff:
 Gap=
       -0.253 Goal= None
                              Shift=
                                      0.000
 RMSDP=8.50D-03 MaxDP=2.59D-01 DE=-2.08D-01 OVMax= 9.62D-01
 Cycle
       4 Pass 1 IDiag 1:
                   CP: 1.00D+00 1.32D+00 1.39D-01
 RMSU= 3.80D-03
 E= -19154.7896737787
                         Delta-E=
                                        -1.447553928396 Rises=F
Damp=F
 DIIS: error= 9.78D-02 at cycle
                               4 NSaved=
                                           4.
NSaved= 4 IEnMin= 4 EnMin= -19154.7896737787
                                                IErMin= 4
ErrMin= 9.78D-02
 ErrMax= 9.78D-02 EMaxC= 1.00D-01 BMatC= 1.16D+00 BMatP= 1.46D+01
 IDIUse=3 WtCom= 2.21D-02 WtEn= 9.78D-01
 Coeff-Com: -0.151D+01 0.177D+01-0.854D-01 0.826D+00
            0.000D+00 0.000D+00 0.282D+00 0.718D+00
 Coeff-En:
 Coeff:
           -0.334D-01 0.392D-01 0.274D+00 0.720D+00
 Gap=
         0.109 Goal=
                      None
                               Shift=
                                        0.000
 RMSDP=5.59D-03 MaxDP=1.33D-01 DE=-1.45D+00 OVMax= 5.03D-01
 Cycle
       5 Pass 1 IDiag 1:
 RMSU= 2.43D-03
                   CP: 1.01D+00 2.89D+00 4.42D-01 -1.78D-02
 E= -19155.2408762008
                        Delta-E=
                                       -0.451202422009 Rises=F
Damp=F
 DIIS: error= 5.35D-02 at cycle 5 NSaved=
                                             5.
NSaved= 5 IEnMin= 5 EnMin= -19155.2408762008 IErMin= 5
ErrMin= 5.35D-02
 ErrMax= 5.35D-02 EMaxC= 1.00D-01 BMatC= 3.28D-01 BMatP= 1.16D+00
 IDIUse=3 WtCom= 4.65D-01 WtEn= 5.35D-01
 Coeff-Com: -0.611D+00 0.705D+00-0.776D-01 0.395D+00 0.588D+00
 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.306D+00 0.694D+00
 Coeff:
           -0.284D+00 0.328D+00-0.361D-01 0.347D+00 0.645D+00
                               Shift=
                                       0.000
 Gap=
         0.154 Goal=
                      None
```

RMSDP=2.60D-03 MaxDP=8.32D-02 DE=-4.51D-01 OVMax= 2.96D-01 Cycle 6 Pass 1 IDiag 1: RMSU= 1.08D-03 CP: 1.01D+00 2.19D+00 3.17D-01 4.18D-01 6.13D-01 E= -19155.4646562030 Delta-E= -0.223780002274 Rises=F Damp=F DIIS: error= 1.02D-02 at cycle 6 NSaved= 6. NSaved= 6 IEnMin= 6 EnMin= -19155.4646562030 IErMin= 6 ErrMin= 1.02D-02 ErrMax= 1.02D-02 EMaxC= 1.00D-01 BMatC= 1.20D-02 BMatP= 3.28D-01 IDIUse=3 WtCom= 8.98D-01 WtEn= 1.02D-01 Coeff-Com: -0.909D-01 0.104D+00-0.117D-01 0.225D-01 0.171D+00 0.805D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.100D+01 Coeff: -0.816D-01 0.931D-01-0.105D-01 0.202D-01 0.154D+00 0.825D+00 Gap= 0.148 Goal= None Shift= 0.000 RMSDP=6.16D-04 MaxDP=1.73D-02 DE=-2.24D-01 OVMax= 5.58D-02 Cycle 7 Pass 1 IDiag 1: RMSU= 1.99D-04 CP: 1.01D+00 2.36D+00 3.49D-01 3.21D-01 7.27D-01 CP: 8.89D-01 E= -19155.4737885748 Delta-E= -0.009132371782 Rises=F Damp=F DIIS: error= 3.63D-03 at cycle 7 NSaved= 7. NSaved= 7 IEnMin= 7 EnMin= -19155.4737885748 TErMin= 7 ErrMin= 3.63D-03 ErrMax= 3.63D-03 EMaxC= 1.00D-01 BMatC= 1.30D-03 BMatP= 1.20D-02 IDIUse=3 WtCom= 9.64D-01 WtEn= 3.63D-02 Coeff-Com: 0.107D-01-0.124D-01-0.134D-02-0.334D-02-0.925D-02 0.193D+00 Coeff-Com: 0.822D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.977D-01 Coeff-En: 0.902D+00 Coeff: 0.103D-01-0.119D-01-0.129D-02-0.321D-02-0.892D-02 0.190D+00 Coeff: 0.825D+00 Gap= 0.147 Goal= None Shift= 0.000 RMSDP=1.75D-04 MaxDP=5.59D-03 DE=-9.13D-03 OVMax= 1.81D-02 Cycle 8 Pass 1 IDiag 1: RMSU= 6.74D-05 CP: 1.01D+00 2.31D+00 3.39D-01 3.42D-01 7.00D-01 9.47D-01 8.31D-01 CP: -0.001033018674 Rises=F E= -19155.4748215935 Delta-E= Damp=F

DIIS: error= 2.72D-04 at cycle 8 NSaved= 8. NSaved= 8 IEnMin= 8 EnMin= -19155.4748215935 IErMin= 8 ErrMin= 2.72D-04 ErrMax= 2.72D-04 EMaxC= 1.00D-01 BMatC= 1.46D-05 BMatP= 1.30D-03 IDIUse=3 WtCom= 9.97D-01 WtEn= 2.72D-03 Coeff-Com: 0.498D-02-0.572D-02-0.616D-04-0.145D-02-0.994D-02 0.104D-01 Coeff-Com: 0.252D+00 0.750D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 Coeff-En: 0.000D+00 0.100D+01 0.497D-02-0.570D-02-0.614D-04-0.145D-02-0.991D-02 Coeff: 0.104D-01 Coeff: 0.252D+00 0.750D+00 Gap= 0.148 Goal= None Shift= 0.000 RMSDP=2.83D-05 MaxDP=9.59D-04 DE=-1.03D-03 OVMax= 9.43D-04 9 Pass 1 IDiag 1: Cycle RMSU= 1.49D-05 CP: 1.01D+00 2.31D+00 3.40D-01 3.42D-01 7.02D-01 9.45D-01 9.29D-01 9.39D-01 CP: E= -19155.4748375750 Delta-E= -0.000015981561 Rises=F Damp=F DIIS: error= 4.49D-05 at cycle 9 NSaved= 9. NSaved= 9 IEnMin= 9 EnMin= -19155.4748375750 IErMin= 9 ErrMin= 4.49D-05 ErrMax= 4.49D-05 EMaxC= 1.00D-01 BMatC= 3.49D-07 BMatP= 1.46D-05 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.736D-03-0.840D-03 0.934D-05-0.264D-03-0.234D-02-0.624D-02 Coeff-Com: 0.315D-01 0.197D+00 0.780D+00 0.736D-03-0.840D-03 0.934D-05-0.264D-03-0.234D-02-Coeff: 0.624D-02 Coeff: 0.315D-01 0.197D+00 0.780D+00 Gap= 0.147 Goal= None Shift= 0.000 RMSDP=5.94D-06 MaxDP=1.47D-04 DE=-1.60D-05 OVMax= 4.66D-04 Cycle 10 Pass 1 IDiag 1: RMSU= 3.18D-06 CP: 1.01D+00 2.31D+00 3.40D-01 3.42D-01 7.02D-01 CP: 9.45D-01 9.35D-01 9.98D-01 8.56D-01 E= -19155.4748381483 Delta-E= -0.00000573284 Rises=F Damp=F DIIS: error= 1.43D-05 at cycle 10 NSaved= 10. NSaved=10 IEnMin=10 EnMin= -19155.4748381483 IErMin=10 ErrMin= 1.43D-05 ErrMax= 1.43D-05 EMaxC= 1.00D-01 BMatC= 2.57D-08 BMatP= 3.49D-07 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.263D-03 0.301D-03 0.177D-04 0.700D-05 0.465D-03-0.198D-02

Coeff-Com: -0.192D-01-0.432D-01 0.155D+00 0.909D+00 -0.263D-03 0.301D-03 0.177D-04 0.700D-05 0.465D-03-Coeff: 0.198D-02 Coeff: -0.192D-01-0.432D-01 0.155D+00 0.909D+00 0.147 Goal= None Shift= Gap= 0.000 RMSDP=2.14D-06 MaxDP=6.40D-05 DE=-5.73D-07 OVMax= 1.49D-04 Cycle 11 Pass 1 IDiag 1: RMSU= 4.80D-07 CP: 1.01D+00 2.31D+00 3.40D-01 3.42D-01 7.02D-01 9.46D-01 9.38D-01 1.01D+00 9.52D-01 CP: 1.06D+00 E= -19155.4748381955 -0.00000047119 Rises=F Delta-E= Damp=F DIIS: error= 1.51D-06 at cycle 11 NSaved= 11. NSaved=11 IEnMin=11 EnMin= -19155.4748381955 IErMin=11 ErrMin= 1.51D-06 ErrMax= 1.51D-06 EMaxC= 1.00D-01 BMatC= 2.89D-10 BMatP= 2.57D-08 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.141D-04 0.162D-04-0.675D-06 0.816D-05 0.210D-04-0.816D-04 Coeff-Com: -0.712D-03-0.629D-02-0.143D-01-0.208D-02 0.102D+01 Coeff: -0.141D-04 0.162D-04-0.675D-06 0.816D-05 0.210D-04-0.816D-04 -0.712D-03-0.629D-02-0.143D-01-0.208D-02 0.102D+01 Coeff: Gap= 0.147 Goal= None Shift= 0.000 RMSDP=2.50D-07 MaxDP=9.40D-06 DE=-4.71D-08 OVMax= 2.06D-05 Cycle 12 Pass 1 IDiag 1: RMSU= 9.01D-08 CP: 1.01D+00 2.31D+00 3.40D-01 3.42D-01 7.02D-01 9.46D-01 9.39D-01 1.01D+00 9.58D-01 CP: 1.09D+00 CP: 1.13D+00 E= -19155.4748381961 Delta-E= -0.00000000680 Rises=F Damp=F DIIS: error= 1.38D-07 at cycle 12 NSaved= 12. NSaved=12 IEnMin=12 EnMin= -19155.4748381961 IErMin=12 ErrMin= 1.38D-07 ErrMax= 1.38D-07 EMaxC= 1.00D-01 BMatC= 2.96D-12 BMatP= 2.89D-10 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.208D-05-0.239D-05-0.401D-06 0.106D-05-0.347D-05 0.143D-04 Coeff-Com: 0.220D-03 0.858D-03-0.594D-03-0.788D-02 0.756D-02 0.100D+01 0.208D-05-0.239D-05-0.401D-06 0.106D-05-0.347D-05 Coeff: 0.143D-04 Coeff: 0.220D-03 0.858D-03-0.594D-03-0.788D-02 0.756D-02 0.100D+01 Gap= 0.147 Goal= Shift= 0.000 None

RMSDP=2.40D-08 MaxDP=8.45D-07 DE=-6.80D-10 OVMax= 1.48D-06 Cycle 13 Pass 1 IDiag 1: RMSU= 7.57D-09 CP: 1.01D+00 2.31D+00 3.40D-01 3.42D-01 7.02D-01 CP: 9.46D-01 9.39D-01 1.01D+00 9.58D-01 1.09D+00 CP: 1.14D+00 1.15D+00 E= -19155.4748381964 Delta-E= -0.00000000317 Rises=F Damp=F DIIS: error= 7.46D-08 at cycle 13 NSaved= 13. NSaved=13 IEnMin=13 EnMin= -19155.4748381964 IErMin=13 ErrMin= 7.46D-08 ErrMax= 7.46D-08 EMaxC= 1.00D-01 BMatC= 5.99D-13 BMatP= 2.96D-12 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.318D-06-0.365D-06-0.120D-07 0.105D-07-0.390D-06 0.313D-05 Coeff-Com: -0.100D-05 0.215D-04-0.593D-04 0.777D-04-0.126D-01-0.406D-01 Coeff-Com: 0.105D+01 0.318D-06-0.365D-06-0.120D-07 0.105D-07-0.390D-06 Coeff: 0.313D-05 Coeff: -0.100D-05 0.215D-04-0.593D-04 0.777D-04-0.126D-01-0.406D-01 Coeff: 0.105D+01 Gap= 0.147 Goal= None Shift= 0.000 RMSDP=4.85D-09 MaxDP=1.94D-07 DE=-3.17D-10 OVMax= 2.67D-07 Error on total polarization charges = 0.07401 SCF Done: E(RPBE+HF-PBE) = -19155.4748382 A.U. after 13 cycles Convg = 0.4847D-08-V/T = 2.0014 $S^{*}2 = 0.0000$ KE= 1.912955091943D+04 PE=-4.842245318434D+04 EE= 8.746250529529D+03 _____ Variational PCM results _____ <psi(f) | H |psi(f)> (a.u.) = -19155.178895 <psi(f) |H+V(f)/2|psi(f)> (a.u.) = -19155.474838 Total free energy in solution: with all non electrostatic terms (a.u.) = -19155.462012 _____

(Polarized solute)-Solvent (kcal/mol) = -185.71

_____ (kcal/mol) = 19.64 (kcal/mol) = -13.23 Cavitation energy Dispersion energy 1.64 Repulsion energy (kcal/mol) = Total non electrostatic (kcal/mol) = 8.05 _____ Partition over spheres:

 Partition over spheres:

 Sphere on Atom Surface Charge GEl
 GCav
 GDR

 1
 Pt1
 0.96
 -0.043
 2.83
 0.83
 -0.11

 2
 Cl2
 29.05
 0.398
 -37.37
 4.70
 -2.87

 3
 Cl3
 29.05
 0.398
 -37.38
 4.70
 -2.87

 4
 Cl4
 29.05
 0.398
 -37.38
 4.70
 -2.87

 5
 Cl5
 29.05
 0.398
 -37.38
 4.70
 -2.87

 Added spheres:
 37.15
 0.353
 -39.04
 0.00
 0.00

 _____ After PCM corrections, the SCF energy is -19155.4748382 _____ Leave Link 502 at Fri Jan 17 09:25:37 2014, MaxMem= 104857600 сри: 171.0 (Enter C:\G03W\1801.exe) Range of M.O.s used for correlation:1199NBasis=199NAE=74NEE=74NFC=0NROrb=199NOA=74NOB=74NVA=125NVB=125 **** Warning!!: The largest alpha MO coefficient is 0.12899776D+02 Leave Link 801 at Fri Jan 17 09:25:38 2014, MaxMem= 104857600 cpu: 0.0 (Enter C:\G03W\l1002.exe) Minotr: Closed-shell wavefunction. Direct CPHF calculation. Solving linear equations simultaneously. Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Using symmetry in CPHF. Requested convergence is 1.0D-08 RMS, and 1.0D-07 maximum. Secondary convergence is 1.0D-12 RMS, and 1.0D-12 maximum. NewPWx=T KeepS1=F KeepF1=F KeepIn=T MapXYZ=F. MDV= 104857568 using IRadAn= 1. Defaulting to unpruned grid for atomic number 78.

```
Generate precomputed XC quadrature information.
Symmetry not used in FoFDir.
MinBra= 0 MaxBra= 3 Meth= 1.
            0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F
IRaf=
ISym2E= 0 JSym2E=0.
Defaulting to unpruned grid for atomic number
                                               78.
Defaulting to unpruned grid for atomic number
                                               78.
          There are 3 degrees of freedom in the 1st order CPHF.
     3 vectors were produced by pass
                                     Ο.
AX will form
               3 AO Fock derivatives at one time.
     3 vectors were produced by pass
                                     1.
     3 vectors were produced by pass
                                     2.
     3 vectors were produced by pass
                                     3.
     3 vectors were produced by pass
                                     4.
     3 vectors were produced by pass
                                     5.
     3 vectors were produced by pass
                                     6.
Inv2: IOpt= 1 Iter= 1 AM= 3.84D-16 Conv= 1.00D-12.
Inverted reduced A of dimension 21 with in-core refinement.
Calculating GIAO nuclear magnetic shielding tensors.
SCF GIAO Magnetic shielding tensor (ppm):
         Isotropic = -3294.4355
                                  Anisotropy = 7190.6898
 1 Pt
                           0.0001
  XX= 1499.3577
                                            0.0000
                   YX=
                                    ZX=
  XY=
          0.0001
                   YY= 1499.3577
                                    ZY=
                                            0.0000
                                    ZZ=-12882.0218
  XZ=
         -0.0002
                          -0.0002
                   YZ=
  Eigenvalues: -12882.0218 1499.3576 1499.3578
 2 Cl
         Isotropic = 1247.9666
                                  Anisotropy =
                                                 279.5088
  XX= 1182.5464
                   YX=
                           0.0000
                                    ZX=
                                           -0.0003
  XY=
         -0.0001
                   YY= 1127.0477
                                    ZY=
                                            0.0001
  XZ=
         -0.0003
                   YZ=
                          -0.0003
                                    ZZ= 1434.3058
  Eigenvalues: 1127.0477 1182.5464 1434.3058
  3 Cl
         Isotropic = 1247.9666
                                  Anisotropy =
                                                 279.5088
  XX= 1127.0477
                   YX=
                          -0.0001
                                    ZX=
                                            0.0001
  XY=
          0.0000
                   YY= 1182.5464
                                    ZY=
                                           -0.0003
  XZ =
         -0.0003
                   YZ=
                          -0.0003
                                    ZZ= 1434.3058
  Eigenvalues: 1127.0477 1182.5464 1434.3058
         Isotropic = 1247.9664
                                                 279.5092
  4 Cl
                                  Anisotropy =
  XX= 1127.0479
                   YX=
                           0.0000
                                    ZX=
                                            0.0000
  XY=
          0.0000
                   YY=
                        1182.5454
                                    ZY=
                                             0.0000
         -0.0002
                                    ZZ= 1434.3058
  XZ=
                   YZ=
                           0.0000
  Eigenvalues: 1127.0479 1182.5454 1434.3058
  5 Cl
         Isotropic = 1247.9664
                                  Anisotropy =
                                                 279.5092
  XX= 1182.5454
                   YX=
                           0.0000
                                    ZX=
                                            0.0000
  XY=
          0.0000
                        1127.0479
                                    ZY=
                   YY=
                                            0.0000
                                    ZZ= 1434.3058
  XZ=
          0.0000
                   YZ=
                          -0.0002
  Eigenvalues: 1127.0479 1182.5454 1434.3058
End of Minotr Frequency-dependent properties file 721 does not
exist.
Leave Link 1002 at Fri Jan 17 09:29:33 2014, MaxMem= 104857600
cpu:
        235.0
 (Enter C:\G03W\1601.exe)
```

Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0. **** Population analysis using the SCF density. ***** Orbital symmetries: Occupied (A1G) (A1G) (EU) (EU) (A2U) (A1G) (A1G) (B1G) (EU) (EU) (EU) (EU) (A2U) (B1G) (B2G) (EG) (EG) (A1G) (A1G) (EU) (EU) (A2U) (B1G) (B2G) (EG) (EG) (A1G) (A1G) (B1G) (EU) (EU) (B1G) (EU) (EU) (A1G) (B2U) (EG) (EG) (A2U) (A2G) (EU) (EU) (B2G) (EU) (EU) (B2U) (B1U) (EU) (EU) (A2U) (A1G) (EU) (EU) (A2U) (A1G) (B1G) (EU) (EU) (B1G) (A1G) (B2G) (EG) (EG) (EU) (EU) (A2U) (B2U) (EU) (EU) (A2G) (B2G) (EG) (EG) (A1G) Virtual (B1G) (A1G) (EU) (EU) (A2U) (B1G) (B2G) (EG) (EG) (A1G) (A2U) (EU) (EU) (A1G) (B2U) (EU) (EU) (A2G) (B1G) (EG) (EG) (A1G) (EU) (EU) (B2G) (A2U) (EU) (EU) (A1G) (B1G) (B1G) (A1G) (B2G) (A2U) (EU) (EU) (EU) (EU) (EG) (EG) (B2U) (EU) (EU) (B1G) (EG) (EG) (B2U) (B2G) (A2G) (EU) (EU) (A2U) (A1G) (B1U) (A1G) (A1U) (EU) (EU) (EG) (EG) (A2G) (B1G) (A1G) (B1U) (EU) (EU) (EG) (EG) (B1G) (A2U) (EU) (EU) (B2G) (B2U) (A1G) (EU) (EU) (B1G) (A2U) (A1G) (EU) (EU) (B1U) (EU) (EU) (A2U) (B2U) (EU) (EU) (EG) (EG) (B2G) (A1G) (B1G) (A1G) (A2U) (EU) (EU) (EG) (EG) (B2G) (A1G) (B1G) (A1G) (A2U) (EU) (EU) (EG) (EG) (B2G) (A1G) (B1G) (A1G) (A2U) (EU) (EU) (A1G) (A2U) (EU) (EU) (A1G) (A1G) (A1G) (A1G) (A1G)

The electronic state is 1-A1G.

Alpha occ. eigenvalues -- *******-437.47350-419.60446-419.60446-419.60024 Alpha occ. eigenvalues -- -102.75330-101.64787-101.64786-101.64784-101.64784 Alpha occ. eigenvalues -- -94.36327 -94.36327 -94.35457 -79.56625 -79.56566 Alpha occ. eigenvalues -- -79.56086 -79.56086 -79.55930 -21.82478 -18.24232 Alpha occ. eigenvalues -- -18.24232 -18.22299 -11.88985 -11.88499 -11.87410 Alpha occ. eigenvalues ---11.87410 -11.87067 -9.47362 _ 9.47361 -9.47356 Alpha occ. eigenvalues ---9.47356 -7.20592 -7.20592 7.20592 -7.20588 Alpha occ. eigenvalues ---7.20154 -7.20153 -7.20153 7.20152 -7.20118 Alpha occ. eigenvalues ---7.20116 -7.20116 -7.20116 _ 3.32218 -3.32218 -3.31199 -3.30623 -3.30267 -Alpha occ. eigenvalues --3.30267 -3.30110 Alpha occ. eigenvalues ---3.10517 -1.98927 -1.98927 -1.95102 -0.77846 Alpha occ. eigenvalues ---0.76723 -0.76675 -0.76675 0.38217 -0.37283 -0.36632 -0.32915 Alpha occ. eigenvalues ---0.32915 0.32013 -0.32013 Alpha occ. eigenvalues ---0.30688 -0.28842 -0.28360 0.28360 -0.26772 Alpha occ. eigenvalues ---0.25543 -0.24529 -0.24529 -0.24086 Alpha virt. eigenvalues ---0.09346 0.01887 0.05260 0.05260 0.06074 0.09074 0.09640 Alpha virt. eigenvalues --0.08187 0.09640 0.10127 Alpha virt. eigenvalues --0.10543 0.11488 0.11488 0.13378 0.13253 0.13392 0.13392 0.16168 Alpha virt. eigenvalues --0.18241 0.23766 0.24492 0.27021 Alpha virt. eigenvalues --0.23766 0.27021 0.28017 Alpha virt. eigenvalues --0.40824 0.42348 0.42348 0.43181 0.43081 0.55482 0.58887 0.63608 Alpha virt. eigenvalues --0.64063 0.64178 Alpha virt. eigenvalues --0.64178 0.66532 0.66532 0.67510 0.67510 0.74534 0.74534 Alpha virt. eigenvalues --0.68199 0.75025 0.74553 Alpha virt. eigenvalues --0.75025 0.75545 0.76654 0.79877 0.77501

Alpha virt. eigenvalues --0.79877 0.81616 0.82606 0.86827 0.90285 Alpha virt. eigenvalues --0.93331 0.94145 0.94145 0.94527 0.94527 Alpha virt. eigenvalues --0.94613 0.96521 1.00345 1.00939 1.00658 Alpha virt. eigenvalues --1.00939 1.08144 1.08144 1.11700 1.16527 Alpha virt. eigenvalues --1.18395 1.18395 1.18885 1.19583 1.39277 Alpha virt. eigenvalues --1.45935 1.45935 1.57471 1.69118 1.73289 Alpha virt. eigenvalues --1.90756 1.90756 2.75708 2.81343 2.81343 Alpha virt. eigenvalues --2.83094 2.83306 3.07825 3.07825 3.12927 Alpha virt. eigenvalues --3.13920 3.12927 3.15781 3.39397 5.59232 7.25810 Alpha virt. eigenvalues --7.11194 7.25810 14.67361 14.67361 Alpha virt. eigenvalues --14.67567 14.69632 14.83089 22.53352 39.90847 Alpha virt. eigenvalues --40.03051 40.03051 90.07503 90.07503 90.07723 90.08767 90.16020 104.70853 Alpha virt. eigenvalues --234.47383 234.56329 Alpha virt. eigenvalues -- 234.56329 455.885401328.617951328.687801328.68780 Alpha virt. eigenvalues --Condensed to atoms (all electrons): 2 3 4 5 1 1 Ρt 77.201606 0.081350 0.081350 0.081350 0.081350 2 Cl 0.081350 17.587219 -0.021347 -0.021347 -0.007626 -0.021347 3 Cl 0.081350 -0.021347 17.587219 -0.007626 Cl 0.081350 -0.021347 -0.007626 17.587219 4 -0.021347 5 0.081350 -0.007626 -0.021347 -0.021347 C1 17.587219 Mulliken atomic charges: 1 1 Ρt 0.472995 2 Cl -0.618249 3 Cl -0.618249 Cl -0.618249 4 -0.618249 5 Cl Sum of Mulliken charges= -2.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 0.472995 Ρt 2 Cl -0.618249 3 Cl -0.618249

```
4 Cl -0.618249
     5
       Cl -0.618249
 Sum of Mulliken charges= -2.00000
 Electronic spatial extent (au): <R**2>= 1686.5699
           -2.0000 electrons
 Charge=
 Dipole moment (field-independent basis, Debye):
    X =
           0.0000
                    Y=
                            0.0000
                                      Z =
                                             0.0000 Tot=
0.0000
 Quadrupole moment (field-independent basis, Debye-Ang):
                   YY = -119.9608
  XX=
       -119.9608
                                     ZZ =
                                           -86.5697
                    XZ=
                            0.0000
                                     YZ =
  XY=
           0.0000
                                             0.0000
 Traceless Quadrupole moment (field-independent basis, Debye-
Ang):
         -11.1304
                          -11.1304
                                     ZZ =
                                            22.2608
                    YY=
  XX=
  XY=
           0.0000
                    XZ=
                            0.0000
                                     YZ =
                                             0.0000
 Octapole moment (field-independent basis, Debye-Ang**2):
                            0.0000
                                             0.0000
 XXX=
           0.0000 YYY=
                                    ZZZ =
                                                     XYY=
0.0000
           0.0000
                            0.0000 XZZ=
 XXY=
                   XXZ=
                                             0.0000
                                                    YZZ =
0.0000
           0.0000 XYZ=
                            0.0000
 YYZ=
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -1341.0040 YYYY= -1341.0040 ZZZZ= -110.7755 XXXY=
0.0000
                            0.0000 YYYZ=
XXXZ=
           0.0000 YYYX=
                                             0.0000 ZZZX=
0.0000
 ZZZY =
           0.0000 XXYY= -395.5491 XXZZ= -216.1846 YYZZ= -
216.1846
XXYZ=
           0.0000 YYXZ=
                            0.0000 ZZXY=
                                             0.0000
N-N= 1.391176897179D+03 E-N=-4.842245314061D+04 KE=
1.912955091943D+04
 Symmetry AG
              KE= 9.805135748241D+03
 Symmetry B1G KE= 6.698604994282D+02
 Symmetry B2G KE= 6.241812730076D+02
 Symmetry B3G KE= 6.241812730076D+02
 Symmetry AU
              KE= 9.566891969803D+01
 Symmetry B1U KE= 2.220637150669D+03
 Symmetry B2U KE= 2.544943027691D+03
 Symmetry B3U KE= 2.544943027691D+03
 Calculating spin-rotation constants.
 Leave Link 601 at Fri Jan 17 09:29:35 2014, MaxMem= 104857600
           2.0
cpu:
 (Enter C:\G03W\19999.exe)
 1|1|UNPC-UNK|SP|RPBE1PBE|Gen|C14Pt1(2-)|PCUSER|17-Jan-2014|0||#p
PBE1P
 BE/gen nmr=giao integral(ultrafine) SCRF(solvent=water)
SCF (NoVarAcc, m
 axcycles=1000) | PtCl4 2-PBE0 SARCZORANMR | -
2,1|Pt,0,0.,0.,0.|Cl,0,0.,2
```

.4384,0.|Cl,0,2.4384,0.,0.|Cl,0,-2.4384,0.,0.|Cl,0,0.,-2.4384,0.||Vers ion=IA32W-G03RevE.01|State=1-A1G|HF=-19155.4748382|RMSD=4.847e-009|The rmal=0.|Dipole=0.,0.,0.|PG=D04H [O(Pt1),2C2'(Cl1.Cl1)]||@

JUST WHEN YOU THINK YOU'VE GOT THE WORLD ON A STRING, YOU FIND OUT IT'S YOUR LEASH. Job cpu time: 0 days 0 hours 6 minutes 56.0 seconds. File lengths (MBytes): RWF= 108 Int= 0 D2E= 0 Chk= 9 Scr= 1 Normal termination of Gaussian 03 at Fri Jan 17 09:29:36 2014.

Output file for NMR calculation of [PtCl₆]²⁻

Entering Link 1 = C:\G09W\ll.exe PID= 344.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved.

This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian (R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc.

This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license.

The following legend is applicable only to US Government contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a)

and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19.

Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492

Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above.

Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ***** Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 30-Nov-2013

```
%chk=PtCl62-SARCZORANMR
%nproc=2
Will use up to
               2 processors via shared memory.
%mem=800mb
 _____
#p pbe1pbe/gen nmr=giao integral(ultrafine) SCRF(solvent=water)
SCF (No
VarAcc, maxcycles=1000)
_____
_____
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/5=7,11=2,16=1,25=1,30=1,70=2201,72=1,74=-13,75=-5/1,2,8,3;
4//1;
5/5=2,7=1000,38=1,53=1/2;
8/6=1,10=90,11=11/1;
10/13=100,45=16/2;
6/7=2,8=2,9=2,10=2,28=1/1;
99/9=1/99;
Leave Link 1 at Sat Nov 30 20:45:07 2013, MaxMem= 104857600
сри: 0.0
 (Enter C:\G09W\l101.exe)
 _____
PtC162-SARCZORA
 _____
Symbolic Z-matrix:
Charge = -2 Multiplicity = 1
Ρt
                    Ο.
                            Ο.
                                    0.
                                     2.3961
Cl
                    0.
                            Ο.
Cl
                            2.3961
                    0.
                                    Ο.
Cl
                   -2.3961
                           Ο.
                                     0.
Cl
                    2.3961
                            Ο.
                                     0.
Cl
                    0.
                            -2.3961
                                     Ο.
                                    -2.3961
Cl
                    0.
                            Ο.
           7 NOM=
                      7 NOMF= 0 NMic=
                                             0 NMicF=
NAtoms=
0 NTot=
           7.
                 Isotopes and Nuclear Properties:
 (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic
moments (NMagM)
 in nuclear magnetons)
                      2
                                  3
                                                       5
 Atom
             1
                                            4
          7
6
              195
                          35
                                    35
                                               35
IAtWgt=
          35
                    35
35
AtmWqt= 194.9648000 34.9688527 34.9688527 34.9688527
34.9688527 34.9688527 34.9688527
```

NucSpn= 1 3 3 1 3 3 3 3 3 0.0000000 0.0000000 0.0000000 NQMom= 0.0000000 -8.1650000 -8.1650000 -8.1650000 -8.1650000 -8.1650000 -8.1650000 NMagM= 0.6095000 0.8218740 0.8218740 0.8218740 0.8218740 0.8218740 0.8218740 Leave Link 101 at Sat Nov 30 20:45:07 2013, MaxMem= 104857600 cpu: 0.0 (Enter C:\G09W\1202.exe) Input orientation: _____ ____ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y 7 _____ 1 78 0 0.000000 0.000000 0.000000 17 0 0.000000 0.000000 2 2.396100 0 0.000000 17 2.396100 3 0.000000 17 0 -2.396100 0.000000 4 0.000000 5 17 0 2.396100 0.00000 0.000000 17 0 0.000000 -2.396100 6 0.000000 17 0 0.000000 0.000000 -7 2.396100 _____ Distance matrix (angstroms): 4 1 2 3 5 1 Pt 0.000000 2 Cl 2.396100 0.000000 2.396100 3 Cl 3.388597 0.000000 4 Cl 2.396100 3.388597 3.388597 0.000000 5 Cl 2.396100 3.388597 3.388597 4.792200 0.000000 6 Cl 2.396100 3.388597 4.792200 3.388597 3.388597 7 Cl 2.396100 4.792200 3.388597 3.388597 3.388597 6 7 6 Cl 0.000000 7 Cl 3.388597 0.000000 Stoichiometry Cl6Pt(2-) Framework group OH[O(Pt), 3C4(Cl.Cl)]

Deg. of freedom 1 OH Full point group NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2H NOp 8 Standard orientation: ____ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y 7 _____ 78 0 0.000000 0.000000 1 0.000000 17 0 0.000000 0.000000 2 2.396100 17 0 0.000000 2.396100 3 0.000000 4 17 0 -2.396100 0.000000 0.000000 17 0 2.396100 0.000000 5 0.000000 0 0.000000 -2.396100 17 6 0.000000 7 17 0 0.000000 0.000000 -2.396100 _____ Rotational constants (GHZ): 0.6293119 0.6293119 0.6293119 Leave Link 202 at Sat Nov 30 20:45:07 2013, MaxMem= 104857600 cpu: 0.0 (Enter C:\G09W\1301.exe) General basis read from cards: (5D, 7F) Centers: 1 S 6 1.00 Exponent= 1.6896015676D+06 Coefficients= 5.7974482200D-02 Exponent= 7.5093403004D+05 Coefficients= -1.3148538600D-02 Exponent= 3.3374845779D+05 Coefficients= 1.2503763310D-01 Exponent= 1.4833264791D+05 Coefficients= 9.1535752600D-02 Exponent= 6.5925621293D+04 Coefficients= 3.2913880880D-01 Exponent= 2.9300276130D+04 Coefficients= 5.3748713720D-01 S 1 1.00 Exponent= 1.3022344947D+04 Coefficients= 1.000000000D+00 S 1 1.00 Exponent= 5.7877088650D+03 Coefficients= 1.00000000D+00 S 1 1.00 Exponent= 2.5723150510D+03 Coefficients= 1.000000000D+00 S 1 1.00

S	1	Exponent= 1.00	1.1432511340D+03	Coefficients=	1.000000000D+00
S	1	Exponent=	5.0811161500D+02	Coefficients=	1.000000000D+00
0	-	Exponent=	2.2582738400D+02	Coefficients=	1.000000000D+00
5	1	Exponent=	1.0036772600D+02	Coefficients=	1.000000000D+00
S	1	1.00 Exponent=	4.4607878000D+01	Coefficients=	1.000000000D+00
S	1	1.00 Exponent=	1.9825724000D+01	Coefficients=	1.0000000000D+00
S	1	1.00 Exponent=	8.8114330000D+00	Coefficients=	1.0000000000D+00
S	1	1.00 Exponent=	3.9161920000D+00	Coefficients=	1.0000000000D+00
S	1	1.00 Exponent=	1 74053000000+00	Coefficients=	1 00000000000000+00
S	1	1.00	7 72560000000-01	Coofficients	1 0000000000000000000000000000000000000
S	1	1.00	7.733690000D-01	coefficients-	1.0000000000000000000000000000000000000
S	1	Exponent= 1.00	3.438080000D-01	Coefficients=	1.000000000D+00
S	1	Exponent= 1.00	1.528040000D-01	Coefficients=	1.000000000D+00
P	5	Exponent= 1.00	6.791300000D-02	Coefficients=	1.000000000D+00
		Exponent=	2.3642643991D+04	Coefficients=	1.1403826400D-02
		Exponent=	9.4570575960D+03	Coefficients=	1.7083256700D-02
		Exponent=	3.7828230390D+03	Coefficients=	8.0886502700D-02
		Exponent=	1.5131292150D+03	Coefficients=	2.5252184340D-01
P	1	Exponent= 1.00	6.0525168600D+02	Coefficients=	7.4017959180D-01
P	1	Exponent= 1.00	2.4210067400D+02	Coefficients=	1.000000000D+00
P	1	Exponent=	9.6840270000D+01	Coefficients=	1.000000000D+00
Đ	1	Exponent=	3.8736108000D+01	Coefficients=	1.000000000D+00
- D	1	Exponent=	1.5494443000D+01	Coefficients=	1.000000000D+00
r	1	Exponent=	6.1977770000D+00	Coefficients=	1.000000000D+00
Ρ	T	I.UU Exponent=	2.4791110000D+00	Coefficients=	1.0000000000D+00
Ρ	1	1.00	0.01644000000-01	Coofficients	1 0000000000000000000000000000000000000
Ρ	1	1.00	2.0000000000000000000000000000000000000	coerricients-	1.0000000000000000000000000000000000000
Ρ	1	Exponent= 1.00	3.9665800000D-01	COEfficients=	1.00000000D+00
Ρ	1	Exponent= 1.00	1.586630000D-01	Coefficients=	1.0000000000D+00

D	4	Exponent=	6	5.34	6500	000	00D-	-02	Coef	fic	ient	s=	1.	000	000	000	000	D+00
2	-	Exponent=	1	. 81	1079	32.4	160D-	+03	Coef	fic	ient	s=	7.	685	590	380	0.0	D-03
		Exponent=	- F	5.58	5742	71	00D-	+02	Coef	fic	ient	s=	4	388	330	548	100	D-02
		Exponent=	2	39	4815	553	300D-	+02	Coef	fic	ient	s=	2	455	580	006	520	D-01
		Exponent=	2	2 70	8420)10	םםם, מטטר.	+01	Coef	fic	ient	s=	8	058	200	632 632	20	D = 01
Л	1	1 00	C	• • •	0 12 0) <u> </u>	000		COCL		- CIIC	0	•••	000		002	. 10	
D	1	Fynonent-		16	6695	220	- ם ח ח ו	⊥∩1	Coof	fia	iont	e –	1	000		იიი		
П	1	1 00		• • • 0	0050	20		I U L	COEL	LTC	Tenc	5-	±•	000	000	000	000	
D	Ŧ	I.UU Evpopopt-	1	15	1526	560	-000	∟∩1	Coof	fia	iont	<u> </u>	1	000		000		
П	1		· 1	• 1 0	TJZ(000	100D-	FUI	COEL	LTC	Tenc	5-	Τ.	000	000	000	000	
D	T	1.00		10					Cast	<u> </u>		~_	1	000		~ ^ ^		
P	1	Exponent=	4	• 10	1370	100	100D-	+00	COEL.	LTC	lent	S=	⊥•	000	000	000	000	D+00
D	T	1.00	1	FO	0000					<i>.</i> .			-	~ ~ ~		~ ~ ~		
-	1	Exponent=	1	52	2680	100	100D-	+00	Coer	IIC	lent	s=	⊥.	000	000	000	000	D+00
D	T	1.00	_					~ -		~ .			_					
		Exponent=		.53	7020	000	000D-	-01	Coef:	fic	ient	s=	1.	000	000	000	000	D+00
D	1	1.00																
		Exponent=	2	.01	3460	000	00D-	-01	Coef	fic	ient	s=	1.	000	000	000	000	D+00
D	1	1.00																
		Exponent=	7	.32	1700	000	00D-	-02	Coef	fic	ient	s=	1.	000	000	000	000	D+00
F	4	1.00																
		Exponent=	8	.51	4185	590	00D-	+01	Coef	fic	ient	s=	6.	300)25	930	000	D-02
		Exponent=	2	.83	8062	200	00D-	+01	Coef	fic	ient	s=	2.	942	244	982	80	D-01
		Exponent=	9	.46	0207	7 O C	00D-	+00	Coef	fic	ient	s=	5.	654	142	725	70	D-01
		Exponent=	3	.15	3402	200	00D-	+00	Coef	fic	ient	s=	3.	776	504	816	500	D-01
F	1	1.00																
		Exponent=	1	.05	1134	1 O C	00D-	+00	Coef	fic	ient	s=	1.	000	000	000	00	D+00
F	1	1.00																
		Exponent=	3	.50	3780	000	00D-	-01	Coef	fic	ient	s=	1.	000	000	000	00	D+00
*	* * ;	*																
С	ent	ters: 2	3	4	5	6	7											
6	-32	1G(d , p)																
*	* * ;	*																
Ε	rn	ie: Thresh	=	0.1	0000)D-	-02 5	rol=	0.1	100	00D-	05 S	tr	ict	:=F	•		
T	hei	re are	60	sym	metr	<u>cy</u>	adap	oted	l bas:	is	func	tion	S	of	AG			
sy	mme	etry.		-		-												
T	hei	re are	17	sym	metr	ΩV	adar	oted	l bas:	is	func	tion	s	of	В1	G		
sy	mme	etry.		-		-	-											
T	hei	re are	17	svm	metr	cv	adar	oted	l bas:	is	func	tion	S	of	В2	G		
sv	mme	etrv.		- 1		7	1											
T	hei	re are	17	svm	metr	v	adar	oted	bas	is	func	tion	s	of	B3	G		
sv	mme	etrv.				- 1							-			-		
т. Т	hei	re are	6	svm	metr	ν	adar	oted	bas	is	func	tion	S	of	АIJ			
sv	mme	≥trv	0	<i>~ _ …</i>		- 1	or or or or r			_ ~	2 4110	01011	0	0 -				
Су. T	hei	re are	34	SVM	m_t r	~ 17	adar	hted	has	is	func	tion	q	of	R1	гт		
5 V	mma	stru	51	5 y III		- <u>x</u>	uuu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	bub.	тIJ	Lanc		0	01		0		
с у T	her	ro are	37	C 17m	m_a+ v	~ 7 7	adar	nt ad	had	ie	func	tion	G	οf	BJ.	гт		
1 . S 17	mm4	rv	JI	Synu		- <u>Y</u>	aua		, Das.	10	LUIIC	CTOU	0	υL	고스	0		
с у. T	her	ro are	37	C 17m	m_a+ v	~ 7 7	adar	nt ad	had	ie	func	tion	G	οf	ВЗ	гт		
L.		stru	74	ы унц	uie ti	- <u>Y</u>	uua	JLEU	, Das.	-0	LUIIC	CTOIL	5	ΟT	сu	0		
зy.	uuut	- C - Y ·																

```
Integral buffers will be 262144 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
  219 basis functions, 505 primitive gaussians, 242
cartesian basis functions
   91 alpha electrons 91 beta electrons
     nuclear repulsion energy 2394.3929937619 Hartrees.
IExCor= 1009 DFT=T Ex+Corr=PBE1PBE ExCW=0 ScaHFX= 0.250000
ScaDFX= 0.750000 0.750000 1.000000 1.000000 ScalE2=
1.000000 1.000000
IRadAn= 5 IRanWt= -1 IRanGd=
                                        0 ICorTp=0
NAtoms= 7 NActive= 7 NUniq= 2 SFac= 4.00D+00 NAtFMM=
50 NAOKFM=F Big=F
_____
_____
Polarizable Continuum Model (PCM)
_____
Model
                 : PCM.
Atomic radii : UFF (Universal Force Field).
Polarization charges : Total charges.
Charge compensation : None.
Solution method : Matrix inversion.
Cavity type
                : Scaled VdW (van der Waals Surface)
(Alpha=1.100).
Cavity algorithm : GePol (No added spheres)
                  Default sphere list used, NSphG= 7.
                   Lebedev-Laikov grids with approx. 5.0
points / Ang**2.
                   Smoothing algorithm: Karplus/York
(Gamma=1.0000).
                   Polarization charges: spherical
gaussians, with
                                     point-specific
exponents (IZeta= 3).
                  Self-potential: point-specific (ISelfS=
7).
                  Self-field : sphere-specific E.n sum
rule (ISelfD= 2).
                : Water, Eps= 78.355300 Eps(inf)=
Solvent
1.777849
_____
_____
Spheres list:
ISph on Nord ReO Alpha Xe
                                          Ye
Ze
  1 Pt 1 1.377 1.100 0.000000
                                          0.00000
0.000000
 2 Cl 2 1.974 1.100 0.000000 0.000000
2.396100
```

3	Cl	3	1.974	1.100)	0.000	000		2.3	396100	
4	Cl	4	1.974	1.100)	-2.396	100		0.0	000000	
5	Cl	5	1.974	1.100)	2.396	100		0.0	000000	
6	Cl	6	1.974	1.100)	0.000	000		-2.3	396100	
0.00000 7 -2 3961	0 Cl	7	1.974	1.100)	0.000	000		0.0	000000	
GePol:	Number	of ge	enerato	r spher	res				=	7	,
GePol:	Total r	numbei	r or spi	neres					=	1	
GePOL:	Nulliper	or ex	xposed :	spheres	6				_	C) (
00./13) CoPol·	Numbor	of pr	ainta						_	1100	,
Gerol:	Number	or po	yincs wht of y	nointe					_	1102	1 1 0
Geroi. GePol:	Minimum	n weig	wht of y	points					_	0 965	-05
GePol:	Maximun	n weid	wht of a	points					=	0.21	616
GePol:	Number	of po	oints w	ith low	, we	iaht			=	2.4	
GePol:	Fractio	on of	low-we:	ight po	oint	s (<1% o	f av	a)	=		
2.03%				5 1		,					
GePol:	Cavity	surfa	ace area	a					=	222.	591
Ang**2	-										
GePol:	Cavity	volun	ne						=	226.	465
Ang**3											
Leave	Link 30)1 at	Sat Nov	v 30 20) : 45	:07 2013	, Ma	хМе	em= 1	L048576	500
cpu:	0.0										
(Enter	C:\G090	∛\1302	2.exe)								
NPDir=	0 NMtPBC	C=	1 NCe	lOv=	1	NCel=		1	NCLEO	CP=	1
NCelD=	1							_		_	
	NCelK=	=	1 NCe.	1E2=	1	NC1Lst=		1	CellI	Range=	
0.0.			-			55701					
One-el	ectron i	Lntegi	rals cor	nputed	usı	ng PRISM	•				
One-el	ectron 1	Integi	ral sym	netry u	ised	in STVI	nt 17		1 7	C	2.4
NBasis	= 219	RedA	J = T NI	31=	60	1 /	1 /		1 /	6	34
J4 J	4 210	1 0.01			60	1 7	1 7		1 7	G	24
34 3	4	1.001	J-00 NB1	20-	00	Τ /	⊥ /		L /	0	54
Precom IXCGrd	puting X = 2 IRac	KC qua dAn=	adrature	e grid 5 IF	usi: RanW†	ng t=		-1	IRan(Gd=	
0 AccXC	Q= 0.00I	00+00.									
Defaul	ting to	unpru	uned gra	id for	ator	nic numb	er	78.	5067	NIII o t -	
175883	- 53	א פו	100-	1/3	00200	nosea-		⊥ /	1000	MIOL-	
NSARFM	- 227	225	7 777	227	2	31 NIZ+ZI	1=		7	7	
Теато	.– 227 Link 30)2 24	Sat Nor	ر کے 17 کر کر	ے ۱۰۵۶)	• 08 2013	⊥— . M⊃	vMc	/ m= 1	,. 1048576	00
cpu:	1.0	/2 UU	Suc NU	v JU ZU	, . IJ	2013	, 1.10	221.10	.111 -		, 0 0
(Enter	C:\G090	√\1308	B.exe)								
,	,		- /								

```
Leave Link 308 at Sat Nov 30 20:45:08 2013, MaxMem= 104857600
          0.0
cpu:
 (Enter C:\G09W\1303.exe)
 DipDrv: MaxL=1.
Leave Link 303 at Sat Nov 30 20:45:08 2013, MaxMem= 104857600
cpu:
          0.0
 (Enter C:\G09W\1401.exe)
 Harris functional with IExCor= 1009 diagonalized for initial
quess.
 ExpMin= 6.35D-02 ExpMax= 1.69D+06 ExpMxC= 1.69D+06 IAcc=4
                5 AccDes= 0.00D+00
IRadAn=
 HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn=
                                                       5 IDoV= 1
 ScaDFX= 1.000000 1.000000 1.000000 1.000000
 Defaulting to unpruned grid for atomic number
                                              78.
 Defaulting to unpruned grid for atomic number
                                               78.
 FoFCou: FMM=F IPFlag=
                                 0 FMFlag=
                                               100000 FMFlq1=
\cap
                          0 DoJE=T BraDBF=F KetDBF=T FulRan=T
        NFxFlq=
        Omega= 0.000000 0.000000 1.000000 0.000000 0.000000
ICntrl=
           500 IOpCl= 0
                  1 NMatSO= 1 NMatTO= 0 NMatDO=
        NMat0=
                                                       1
NMtDS0=
          0 NMtDT0=
                      0
        I1Cent=
                          4 NGrid=
                                            0.
 Petite list used in FoFCou.
 Harris En= -20085.9406129799
 Initial guess orbital symmetries:
       Occupied
                (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (EG) (EG)
                 (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (EG)
                 (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U)
                 (EG) (EG) (T2G) (T2G) (T2G) (A1G) (EG) (EG)
(T1U)
                 (T1U) (T1U) (T1U) (T1U) (EG) (EG) (A1G)
                 (T2G) (T2G) (T2G) (T1U) (T1U) (T1G) (T1G)
                 (T1G) (T2U) (T2U) (T2U) (A1G) (T1U) (T1U) (T1U)
                 (T2U) (T2U) (T2U) (A2U) (T1U) (T1U) (T1U) (A1G)
                 (EG) (EG) (T1U) (T1U) (T1U) (A1G) (EG) (EG)
(T2G)
                 (T2G) (T2G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U)
                 (T1U) (T1U) (T1G) (T1G) (T1G) (T2G) (T2G)
                 (T2G)
      Virtual
                 (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG)
(A1G)
                 (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1U) (T1U)
                 (T1U) (EG) (EG) (A1G) (T2G) (T2G) (T2G) (T2U)
                 (T2U) (T2U) (T1U) (T1U) (T1G) (T1G) (T1G) (T1G)
                 (EG) (EG) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G)
                 (T1U) (T1U) (T1U) (A2U) (EU) (EU) (A2G) (T2U)
                 (T2U) (T2U) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U)
                 (T2G) (T2G) (T2G) (A1G) (EG) (EG) (A2U) (EG)
```

(EG)

(T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A2U) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) (A1G) (A1G) The electronic state of the initial guess is 1-A1G. Leave Link 401 at Sat Nov 30 20:45:09 2013, MaxMem= 104857600 1.0 cpu: (Enter C:\G09W\1502.exe) Closed shell SCF: Requested convergence on RMS density matrix=1.00D-08 within1000 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Using DIIS extrapolation, IDIIS= 1040. Integral symmetry usage will be decided dynamically. 175798 words used for storage of precomputed grid. 1362924 NGot= 104857600 MDV= 1362924 IEndB= IEnd= 104555483 LenX= 104555483 LenY= 104496478 Fock matrices will be formed incrementally for 20 cycles. Cvcle 1 Pass 1 IDiag 1: FoFCou: FMM=F IPFlag= 100000 FMFlq1= 0 FMFlag= \cap 0 DoJE=F BraDBF=F KetDBF=F FulRan=T NFxFlq= Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 0 IOpCl= 0 1 NMatSO= 1 NMatTO= 0 NMatDO= NMat0= 1 NMtDS0= 0 NMtDTO= 0 I1Cent= 0 NGrid= 0. Petite list used in FoFCou. Defaulting to unpruned grid for atomic number 78. Defaulting to unpruned grid for atomic number 78. E = -20071.6528367638DIIS: error= 1.68D+00 at cycle 1 NSaved= 1. NSaved= 1 IEnMin= 1 EnMin= -20071.6528367638 IErMin= 1 ErrMin= 1.68D+00 ErrMax= 1.68D+00 EMaxC= 1.00D-01 BMatC= 3.15D+02 BMatP= 3.15D+02 IDIUse=3 WtCom= 0.00D+00 WtEn= 1.00D+00 Coeff-Com: 0.100D+01 Coeff-En: 0.100D+01 Coeff: 0.100D+01 0.046 Goal= None Shift= 0.000 Gap= GapD= 0.046 DampG=0.250 DampE=0.125 DampFc=0.1250 IDamp=-1. Damping current iteration by 1.25D-01

RMSDP=1.80D-02 MaxDP=7.71D-01 OVMax= 9.19D-01 Cycle 2 Pass 1 IDiag 1: Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. RMSU= 1.58D-03 CP: 1.01D+00 E = -20072.5968600722Delta-E= -0.944023308348 Rises=F Damp=T DIIS: error= 1.47D+00 at cycle 2 NSaved= 2. NSaved= 2 IEnMin= 2 EnMin= -20072.5968600722 IErMin= 2 ErrMin= 1.47D+00 ErrMax= 1.47D+00 EMaxC= 1.00D-01 BMatC= 2.28D+02 BMatP= 3.15D+02 IDIUse=3 WtCom= 0.00D+00 WtEn= 1.00D+00 Coeff-Com: -0.533D+01 0.633D+01 Coeff-En: 0.000D+00 0.100D+01 Coeff: 0.000D+00 0.100D+01 Gap= 0.000 Goal= None Shift= 0.000 RMSDP=1.18D-02 MaxDP=4.10D-01 DE=-9.44D-01 OVMax= 1.93D-01 Cycle 3 Pass 1 IDiag 1: Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. RMSU= 5.75D-03 CP: 1.03D+00 3.00D+00 E= -20070.6464423890 Delta-E= 1.950417683140 Rises=F Damp=F DIIS: error= 3.87D-01 at cycle 3 NSaved= 3. NSaved= 3 IEnMin= 2 EnMin= -20072.5968600722 IErMin= 3 ErrMin= 3.87D-01 ErrMax= 3.87D-01 EMaxC= 1.00D-01 BMatC= 2.02D+01 BMatP= 2.28D+02 IDIUse=3 WtCom= 0.00D+00 WtEn= 1.00D+00 EnCoef did 100 forward-backward iterations Coeff-Com: 0.146D+01-0.150D+01 0.104D+01 Coeff-En: 0.519D+00 0.369D-01 0.444D+00 Coeff: 0.519D+00 0.369D-01 0.444D+00 0.063 Goal= None Shift= 0.000 Gap= RMSDP=1.15D-02 MaxDP=5.09D-01 DE= 1.95D+00 OVMax= 6.24D-01 Cycle 4 Pass 1 IDiag 1: Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. RMSU= 2.64D-03 CP: 1.01D+00 1.26D+00 6.65D-02 E= -20075.0629684166 Delta-E= -4.416526027617 Rises=F Damp=F DIIS: error= 9.23D-02 at cycle 4 NSaved= 4. NSaved= 4 IEnMin= 4 EnMin= -20075.0629684166 IErMin= 4 ErrMin= 9.23D-02 ErrMax= 9.23D-02 EMaxC= 1.00D-01 BMatC= 1.41D+00 BMatP= 2.02D+01 IDIUse=3 WtCom= 7.67D-02 WtEn= 9.23D-01 Coeff-Com: -0.587D+00 0.727D+00-0.663D-01 0.926D+00 0.000D+00 0.000D+00 0.963D-01 0.904D+00 Coeff-En:

```
-0.450D-01 0.557D-01 0.838D-01 0.905D+00
Coeff:
        0.024 Goal=
                     None
                              Shift=
                                       0.000
Gap=
RMSDP=6.72D-03 MaxDP=4.08D-01 DE=-4.42D+00 OVMax= 7.70D-01
Cycle 5 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-04
Density has only Abelian symmetry.
RMSU= 3.69D-03 CP: 1.02D+00 2.89D+00 9.75D-02 4.26D-01
E= -20074.5962490756
                       Delta-E=
                                       0.466719341046 Rises=F
Damp=F
DIIS: error= 7.21D-02 at cycle 5 NSaved=
                                            5.
NSaved= 5 IEnMin= 4 EnMin= -20075.0629684166
                                               IErMin= 5
ErrMin= 7.21D-02
ErrMax= 7.21D-02 EMaxC= 1.00D-01 BMatC= 1.12D+00 BMatP= 1.41D+00
IDIUse=3 WtCom= 2.79D-01 WtEn= 7.21D-01
Coeff-Com: 0.995D-01-0.103D+00-0.625D-01 0.534D+00 0.532D+00
Coeff-En:
            0.000D+00 0.000D+00 0.000D+00 0.627D+00 0.373D+00
            0.277D-01-0.287D-01-0.174D-01 0.601D+00 0.417D+00
Coeff:
        0.103 Goal=
                              Shift=
                                       0.000
Gap=
                     None
RMSDP=3.81D-03 MaxDP=2.72D-01 DE= 4.67D-01 OVMax= 2.89D-01
Cycle 6 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-04
Density has only Abelian symmetry.
RMSU= 6.37D-04 CP: 1.01D+00 1.77D+00 7.42D-02 7.45D-01
5.29D-01
                        Delta-E=
E= -20075.4996116995
                                       -0.903362623871 Rises=F
Damp=F
DIIS: error= 1.25D-02 at cycle 6 NSaved=
                                          6.
NSaved= 6 IEnMin= 6 EnMin= -20075.4996116995
                                                IErMin= 6
ErrMin= 1.25D-02
ErrMax= 1.25D-02 EMaxC= 1.00D-01 BMatC= 2.27D-02 BMatP= 1.12D+00
IDIUse=3 WtCom= 8.75D-01 WtEn= 1.25D-01
Coeff-Com: -0.449D-01 0.531D-01 0.145D-02 0.901D-01-0.474D-01
0.948D+00
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00
0.100D+01
           -0.393D-01 0.465D-01 0.127D-02 0.788D-01-0.414D-01
Coeff:
0.954D+00
Gap=
        0.149 Goal= None
                              Shift=
                                        0.000
RMSDP=6.48D-04 MaxDP=3.07D-02 DE=-9.03D-01 OVMax= 5.71D-02
Cycle 7 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-04
Density has only Abelian symmetry.
                  CP: 1.01D+00 1.68D+00 7.12D-02 8.10D-01
RMSU= 2.22D-04
4.45D-01
                   CP: 8.28D-01
E= -20075.5083283120 Delta-E=
                                       -0.008716612516 Rises=F
Damp=F
```

```
S101
```

DIIS: error= 3.50D-03 at cycle 7 NSaved= 7. NSaved= 7 IEnMin= 7 EnMin= -20075.5083283120 IErMin= 7 ErrMin= 3.50D-03 ErrMax= 3.50D-03 EMaxC= 1.00D-01 BMatC= 1.67D-03 BMatP= 2.27D-02 IDIUse=3 WtCom= 9.65D-01 WtEn= 3.50D-02 Coeff-Com: -0.290D-01 0.335D-01 0.198D-02 0.235D-01-0.200D-01 0.413D+00 Coeff-Com: 0.577D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.141D+00 Coeff-En: 0.859D+00 -0.280D-01 0.324D-01 0.191D-02 0.226D-01-0.193D-01 Coeff: 0.403D+00 Coeff: 0.587D+00 Gap= 0.148 Goal= None Shift= 0.000 RMSDP=2.03D-04 MaxDP=1.08D-02 DE=-8.72D-03 OVMax= 1.42D-02 Cycle 8 Pass 1 IDiag 1: Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. RMSU= 2.97D-05 CP: 1.01D+00 1.70D+00 7.24D-02 7.98D-01 4.62D-01 CP: 9.22D-01 5.55D-01 E= -20075.5098738114 Delta-E= -0.001545499465 Rises=F Damp=F DIIS: error= 3.00D-04 at cycle 8 NSaved= 8. NSaved= 8 IEnMin= 8 EnMin= -20075.5098738114 IErMin= 8 ErrMin= 3.00D-04 ErrMax= 3.00D-04 EMaxC= 1.00D-01 BMatC= 1.14D-05 BMatP= 1.67D-03 IDIUse=3 WtCom= 9.97D-01 WtEn= 3.00D-03 Coeff-Com: -0.672D-02 0.771D-02-0.249D-04 0.296D-02-0.844D-03 0.648D-01 Coeff-Com: 0.151D+00 0.781D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 Coeff-En: 0.000D+00 0.100D+01 Coeff: -0.670D-02 0.769D-02-0.249D-04 0.295D-02-0.841D-03 0.646D-01 Coeff: 0.151D+00 0.782D+00 Gap= 0.148 Goal= None Shift= 0.000 RMSDP=2.33D-05 MaxDP=8.82D-04 DE=-1.55D-03 OVMax= 1.96D-03 Cycle 9 Pass 1 IDiag 1: Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. CP: 1.01D+00 1.70D+00 7.24D-02 7.98D-01 RMSU= 7.98D-06 4.64D-01 9.17D-01 6.08D-01 8.49D-01 CP: E= -20075.5098860747 Delta-E= -0.000012263266 Rises=F Damp=F

```
DIIS: error= 1.34D-04 at cycle 9 NSaved=
                                            9.
NSaved= 9 IEnMin= 9 EnMin= -20075.5098860747
                                              IErMin= 9
ErrMin= 1.34D-04
ErrMax= 1.34D-04 EMaxC= 1.00D-01 BMatC= 2.38D-06 BMatP= 1.14D-05
IDIUse=3 WtCom= 9.99D-01 WtEn= 1.34D-03
EnCoef did 1 forward-backward iterations
Coeff-Com: -0.190D-03 0.210D-03-0.554D-04 0.244D-03-0.128D-03
0.566D-02
Coeff-Com: 0.243D-01 0.229D+00 0.741D+00
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00
0.000D+00
Coeff-En: 0.000D+00 0.104D-01 0.990D+00
          -0.190D-03 0.210D-03-0.553D-04 0.244D-03-0.128D-03
Coeff:
0.565D-02
Coeff:
           0.243D-01 0.229D+00 0.741D+00
         0.148 Goal= None Shift= 0.000
Gap=
RMSDP=4.68D-06 MaxDP=1.77D-04 DE=-1.23D-05 OVMax= 1.67D-04
Cycle 10 Pass 1 IDiag 1:
Restarting incremental Fock formation.
E= -20075.5098871556 Delta-E=
                                     -0.000001080847 Rises=F
Damp=F
DIIS: error= 4.83D-05 at cycle 10 NSaved= 10.
NSaved=10 IEnMin=10 EnMin= -20075.5098871556
                                               IErMin=10
ErrMin= 4.83D-05
ErrMax= 4.83D-05 EMaxC= 1.00D-01 BMatC= 4.19D-07 BMatP= 2.38D-06
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.357D-03-0.409D-03 0.136D-04-0.219D-04-0.349D-03-
0.579D-04
Coeff-Com: 0.299D-02 0.638D-01 0.189D+00 0.744D+00
            0.357D-03-0.409D-03 0.136D-04-0.219D-04-0.349D-03-
Coeff:
0.579D-04
         0.299D-02 0.638D-01 0.189D+00 0.744D+00
Coeff:
Gap=
        0.148 Goal= None
                             Shift=
                                       0.000
RMSDP=2.95D-06 MaxDP=2.01D-04 DE=-1.08D-06 OVMax= 1.86D-04
Cycle 11 Pass 1 IDiag 1:
RMSU= 2.05D-06
                  CP: 1.00D+00
E= -20075.5098875284
                       Delta-E=
                                      -0.00000372831 Rises=F
Damp=F
DIIS: error= 6.85D-06 at cycle 11 NSaved= 11.
NSaved=11 IEnMin=11 EnMin= -20075.5098875284
                                              IErMin=11
ErrMin= 6.85D-06
ErrMax= 6.85D-06 EMaxC= 1.00D-01 BMatC= 5.40D-09 BMatP= 4.19D-07
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.357D-04-0.407D-04 0.696D-06 0.234D-04-0.179D-04
0.146D-03
Coeff-Com: 0.418D-03 0.114D-02-0.212D-01 0.256D-01 0.994D+00
            0.357D-04-0.407D-04 0.696D-06 0.234D-04-0.179D-04
Coeff:
0.146D-03
```

0.418D-03 0.114D-02-0.212D-01 0.256D-01 0.994D+00 Coeff: 0.148 Goal= None Shift= 0.000 Gap= RMSDP=2.32D-07 MaxDP=9.22D-06 DE=-3.73D-07 OVMax= 1.25D-05 Cycle 12 Pass 1 IDiag 1: RMSU= 1.10D-07 CP: 1.00D+00 1.05D+00 E= -20075.5098875305 Delta-E= -0.00000002110 Rises=F Damp=F DIIS: error= 5.57D-07 at cycle 12 NSaved= 12. NSaved=12 IEnMin=12 EnMin= -20075.5098875305 IErMin=12 ErrMin= 5.57D-07 ErrMax= 5.57D-07 EMaxC= 1.00D-01 BMatC= 5.37D-11 BMatP= 5.40D-09 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.808D-05-0.917D-05-0.584D-07 0.904D-05-0.405D-05 0.654D - 04Coeff-Com: 0.154D-03 0.427D-03-0.665D-02 0.105D-02 0.279D+00 0.726D+00 0.808D-05-0.917D-05-0.584D-07 0.904D-05-0.405D-05 Coeff: 0.654D-04 Coeff: 0.154D-03 0.427D-03-0.665D-02 0.105D-02 0.279D+00 0.726D+00 Gap= 0.148 Goal= None Shift= 0.000 RMSDP=4.39D-08 MaxDP=1.68D-06 DE=-2.11D-09 OVMax= 1.03D-06 Cycle 13 Pass 1 IDiag 1: RMSU= 2.49D-08 CP: 1.00D+00 1.05D+00 8.99D-01 E= -20075.5098875308 Delta-E= -0.0000000302 Rises=F Damp=F DIIS: error= 3.28D-07 at cycle 13 NSaved= 13. NSaved=13 IEnMin=13 EnMin= -20075.5098875308 IErMin=13 ErrMin= 3.28D-07 ErrMax= 3.28D-07 EMaxC= 1.00D-01 BMatC= 1.55D-11 BMatP= 5.37D-11 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.236D-06-0.259D-06 0.136D-07 0.774D-06-0.691D-06 0.919D-05 Coeff-Com: 0.267D-04 0.142D-03-0.374D-03-0.226D-02-0.824D-02 0.164D+00Coeff-Com: 0.846D+00 Coeff: 0.236D-06-0.259D-06 0.136D-07 0.774D-06-0.691D-06 0.919D-05 Coeff: 0.267D-04 0.142D-03-0.374D-03-0.226D-02-0.824D-02 0.164D+00 Coeff: 0.846D+00 Gap= 0.148 Goal= None Shift= 0.000 RMSDP=1.35D-08 MaxDP=5.45D-07 DE=-3.02D-10 OVMax= 9.67D-07 Cycle 14 Pass 1 IDiag 1: RMSU= 2.33D-09 CP: 1.00D+00 1.06D+00 9.46D-01 8.95D-01 E= -20075.5098875309 Delta-E= -0.00000000146 Rises=F Damp=F

DIIS: error= 4.02D-08 at cycle 14 NSaved= 14. NSaved=14 IEnMin=14 EnMin= -20075.5098875309 IErMin=14 ErrMin= 4.02D-08 ErrMax= 4.02D-08 EMaxC= 1.00D-01 BMatC= 2.07D-13 BMatP= 1.55D-11 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.361D-07 0.405D-07-0.367D-08-0.531D-07 0.104D-06-0.431D-06 Coeff-Com: 0.110D-05 0.784D-05-0.437D-04-0.545D-03-0.346D-02 0.102D-03 Coeff-Com: 0.368D-01 0.967D+00 -0.361D-07 0.405D-07-0.367D-08-0.531D-07 0.104D-06-Coeff: 0.431D-06 0.110D-05 0.784D-05-0.437D-04-0.545D-03-0.346D-02 Coeff: 0.102D-03 0.368D-01 0.967D+00 Coeff: Gap= 0.148 Goal= None Shift= 0.000 RMSDP=1.93D-09 MaxDP=8.24D-08 DE=-1.46D-10 OVMax= 1.44D-07 Error on total polarization charges = 0.01774SCF Done: E(RPBE1PBE) = -20075.5098875 A.U. after 14 cycles Convg = 0.1932D-08 -V/T = 2.0014KE= 2.004828796335D+04 PE=-5.262142360706D+04 EE= 1.010323276242D+04 Leave Link 502 at Sat Nov 30 20:47:18 2013, MaxMem= 104857600 cpu: 129.0 (Enter C:\G09W\1801.exe) Range of M.O.s used for correlation: 1 219 NBasis= 219 NAE= 91 NBE= 91 NFC= 0 NFV= 0 91 NVA= NROrb= 219 NOA= 91 NOB= 128 128 NVB= **** Warning!!: The largest alpha MO coefficient is 0.12744021D+02 Leave Link 801 at Sat Nov 30 20:47:18 2013, MaxMem= 104857600 0.0 cpu: (Enter C:\G09W\l1002.exe) Minotr: Closed shell wavefunction. NEqPCM: Using equilibrium solvation (IEInf=0, Eps= 78.3553, EpsInf= 1.7778)Direct CPHF calculation. Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Using symmetry in CPHF. Requested convergence is 1.0D-08 RMS, and 1.0D-07 maximum. Secondary convergence is 1.0D-12 RMS, and 1.0D-12 maximum.

```
NewPWx=T KeepS1=F KeepF1=F KeepIn=T MapXYZ=F SortEE=F
KeepMc=T.
         MDV=
                  104857554 using IRadAn=
                                                1.
 Defaulting to unpruned grid for atomic number 78.
Generate precomputed XC quadrature information.
         Solving linear equations simultaneously, MaxMat=
0.
FoFCou: FMM=F IPFlag=
                                0 FMFlag=
                                             10101102 FMFlq1=
0
                  40000000 DoJE=F BraDBF=F KetDBF=T FulRan=T
        NFxFla=
        Omega= 0.000000 0.000000 1.000000 0.000000 0.000000
         6100 IOpCl= 0
ICntrl=
                  1 NMatSO=
                              1 NMatTO= 0 NMatDO=
        NMat0=
                                                       1
         0 \text{ NMtDTO} = 0
NMtDS0=
        I1Cent=
                          7 NGrid=
                                          1189.
 Symmetry not used in FoFCou.
 Defaulting to unpruned grid for atomic number 78.
 Defaulting to unpruned grid for atomic number 78.
 Integrals replicated using symmetry in FoFDir.
 MinBra= 0 MaxBra= 3 Meth= 1.
 IRaf=
            0 NMat= 3 IRICut= 1 DoRegI=T DoRafI=F
ISym2E= 2 JSym2E=2.
         There are 3 degrees of freedom in the 1st order
CPHF. IDoFFX=0.
      3 vectors produced by pass 0 Test12= 3.88D-13 3.33D-08
XBig12= 5.13D+00 1.57D+00.
 AX will form
                 3 AO Fock derivatives at one time.
      3 vectors produced by pass 1 Test12= 3.88D-13 3.33D-08
XBig12= 6.45D-02 1.72D-01.
      3 vectors produced by pass 2 Test12= 3.88D-13 3.33D-08
XBig12= 1.52D-03 2.72D-02.
      3 vectors produced by pass 3 Test12= 3.88D-13 3.33D-08
XBiq12= 1.26D-05 1.85D-03.
     3 vectors produced by pass 4 Test12= 3.88D-13 3.33D-08
XBig12= 8.51D-08 1.35D-04.
     3 vectors produced by pass 5 Test12= 3.88D-13 3.33D-08
XBig12= 2.74D-10 6.75D-06.
      3 vectors produced by pass 6 Test12= 3.88D-13 3.33D-08
XBig12= 6.47D-13 2.70D-07.
 Inverted reduced A of dimension 21 with in-core refinement.
 Calculating GIAO nuclear magnetic shielding tensors.
 SCF GIAO Magnetic shielding tensor (ppm):
         Isotropic = -1600.4199
  1 Pt
                                 Anisotropy =
                                                   0.0001
  XX= -1600.4199
                                    ZX=
                   YX=
                           0.0000
                                            0.0000
  XY=
          0.0000
                   YY= -1600.4199
                                    ZY=
                                            0.0000
  XZ=
          0.0000
                   YZ=
                                    ZZ= -1600.4199
                           0.0000
  Eigenvalues: -1600.4199 -1600.4199 -1600.4199
  2 Cl Isotropic = 846.4486 Anisotropy = 374.8435
  XX=
        721.5008
                 YX=
                           0.0000
                                    ZX=
                                            0.0000
          0.0000
  XY=
                   YY=
                         721.5008
                                    ZY=
                                            0.0000
```

XZ= 0.0000 ZZ= 1096.3443 0.0000 YZ= 721.5008 Eigenvalues: 721.5008 1096.3443 3 Cl Isotropic = 846.4486 Anisotropy = 374.8435XX= 721.5008 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 1096.3443 ZY= 0.0000 XZ= 0.0000 0.0000 ZZ =YZ= 721.5008 Eigenvalues: 721.5008 721.5008 1096.3443 4 Cl Isotropic = 846.4487 Anisotropy = 374.8435XX= 1096.3443 0.0000 ZX= 0.0000 YX= ZY= XY= 0.0000 YY= 721.5008 0.0000 ZZ= XZ =0.0000 YZ= 0.0000 721.5008 Eigenvalues: 721.5008 721.5008 1096.3443 5 Cl Isotropic = 846.4487 Anisotropy = 374.8435XX= 1096.3443 0.0000 0.0000 ZX= YX= XY =0.0000 YY= 721.5008 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 721.5008 721.5008 721.5008 1096.3443 Eigenvalues: Isotropic = 846.4486 6 Cl Anisotropy = 374.84350.0000 XX= 721.5008 0.0000 YX= ZX= XY= 0.0000 YY= 1096.3443 ZY= 0.0000 XZ= 0.0000 ZZ =721.5008 YZ= 0.0000 721.5008 721.5008 1096.3443 Eigenvalues: 7 Cl Isotropic = 846.4486 Anisotropy = 374.8435XX= 721.5008 0.0000 0.0000 YX= ZX= XY= 0.0000 YY= 721.5008 ZY= 0.0000 XZ =0.0000 YZ =0.0000 ZZ= 1096.3443 Eigenvalues: 721.5008 721.5008 1096.3443 End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. Leave Link 1002 at Sat Nov 30 20:53:50 2013, MaxMem= 104857600 392.0 cpu: (Enter C:\G09W\1601.exe) Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0. **** Population analysis using the SCF density. ***** Orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (A1G) (EG)

(EG) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (EG)

			(EG)	(T2G)	(T2G)	(T2G)	(A1G)	(T1U)	(T1U)	(T1U)
$ \begin{array}{c} (T10) \\ (T10) \\ (T10) (T10) (T10) (T10) (T10) (EG) (EG) (A1G) \\ (T2G) (T2G) (T2G) (T10) (T20) (T20) (T20) (T20) (T20) (T10) (T20) $			(EG)	(EG)	(T2G)	(T2G)	(T2G)	(A1G)	(EG) (E	lG)
$ \begin{array}{c} (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2U) (T2G) (T2G) (T2G) (T2G) (T1G) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1G) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1G) (T1G) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1G) (T2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1U) (T1U) (T1G) (T1G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1G) (T2U) (T2G) (T2G) (T2G) (T1G) (T2G) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T2U) (T2G) (T1U) (T1U$	(T1U)									
$ \begin{array}{c} (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1G) (T1G) (T1U) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1U) (T2U) (T2U) (T2U) (T2U) (T2U) (T2U) (T2U) (T2C) (T2G) (T2G$			(T1U)	(T1U) (T1U) (T1U	J) (T1U)	(EG)	(EG) (AlG)
$ \begin{array}{c} (T1G) (T2U) (T2U) (T2U) (T1U) (T1G) (T2G) (T2G) (T2G) (T1G) (T1U) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1G) (T1U) (T2U) (T2G) (T1U) (T1U$			(T2G)	(T2G) (T2G) (T1U	J) (T1U)	(T1U)	(T1G)	(T1G)
(T20) (T20) (A20) (A1G) (T10) (T10) (T10) (A1G) (EG) (EG) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T10) (T10) (T10) (T10) (T20) (T20) (T10) (T20) (T10) (T10) (T10) (T10) (T10) (T10) (E0) (EG) (EG) (EG) (EG) (T2G) (T2G) (T2G) (T2G) (T20)			(T1G)	(T2U) (T2U) (T2U	J) (T1U)	(T1U)	(T1U)	(T2U)
			(T2U)	(T2U) (A2U) (A16	G) (T1U)	(T1U)	(T1U)	(A1G)
			(EG)	(EG)	(T1U)	(T1U)	(T1U)	(EG) (E	EG) (T2	2G)
$ \begin{array}{c} (T1G) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (T2G) (T1G) (T2G) (T1G) (T1U) (T1U$	(T2G)		(=0.0)	(1 1 0) (m1) (517		(=0.11)	(=0.11)	(=0.11)
<pre>(T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) Virtual (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T2U) (T2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T2U) (T2U) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EG) (EG) (EG) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1G) (T1U) (T1U) (EU) (EU) (A2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (A1G) (EG) (EG) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (EG) (T1U) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues102.86118-101.65845-94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues79.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21135</pre>			(TZG)	(AIG) (TIU) (TIU)) (TIU)	(TZU)	(TZU)	(TZU)
$ \begin{array}{c} (T1G) \\ Virtual (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) \\ (A1G) \\ (A1G) \\ (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (EG) (T2G) (T2U) \\ (T2U) (T2U) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (T1G) (T2U) (EG) (EG) (EG) (EG) (T1G) (T1G) (T1G) (T1U) (T1U) (EU) \\ (EU) (A2G) (T1G) (T1G) (T1G) (T2G) (T2G) (A2U) (EG) \\ (T1U) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T1U) (T1G) (T1C) (T1U) $			(TTU)	('1'10) ('I'I')) (126	5) (T2G)	(T2G)	(TIG)	('I'IG)
<pre>Virtual (EG) (EG) (AIG) (TIU) (TIU) (TIU) (EG) (EG) (AIG) (AIG) (T2G) (T2G) (T2G) (T1U) (TIU) (TIU) (TIU) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T1U) (T1G) (T1G) (T2U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (EU) (EU) (A2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (EU) (A2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2G) (T2G) (AIG) (T1U) (T1U) (T1U) (AIG) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2U) (T2G) (T2G) (AIG) (T1U) (T1U) (T1U) (AIG) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (AIG) (AIG) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (AIG) (AIG) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (AIG) (AIG) (T1U) (T1U) (AIG) (AIG) (AIG) (AIG) The electronic state is 1-AIG. Alpha occ. eigenvalues +********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65845-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845-94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues79.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21135</pre>			('T'LG)	((- 1)	((((
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(7,1,0)	Virtual	(EG)	(EG)	(ALG)	('1'10)	('1'10)	('I'IU)	(EG) (E	G)
<pre>(T129) (T10) (T10) (T10) (T10) (T20) (T20) (T20) (T10) (T10) (T10) (T10) (T10) (T10) (T10) (T10) (T20) (T20) (T20) (T20) (T20) (T20) (T20) (T10) (T10) (T10) (T10) (T10) (T10) (T10) (T10) (E0) (E0) (E0) (T10) (T10) (T10) (T10) (T20) (T10) (T10) (T10) (T10) (T20) (T20) (T20) (T20) (A16) (T10) (T10) (T10) (T20) (T20) (T20) (T20) (A16) (T10) (T10) (T10) (T20) (T20) (T20) (T20) (T20) (T20) (T20) (T20) (T20) (T20) (T20) (T20) (T10) (T10) (T10) (E0) (E0) (T10) (T10) (T10) (T10) (T10) (E0) (E0) (E0) (T10) (T10) (T10) (T10) (T20) (T20) (T20) (E0) (E0) (A16) (T10) (T10) (T10) (T20) (T20) (E0) (E0) (A16) (T10) (T10) (T10) (T20) (T20) (E0) (E0) (A16) (T10) (T10) (T10) (A16) (A16) The electronic state is 1-A1G. Alpha occ. eigenvalues **********************************</pre>	(AIG)		(T2C)	() (Ͳ2ር) (m1r	T) (ידי1)	(111)	(FC)	(FC)
<pre>(110) (110) (110) (110) (113) (113) (123) (124) (124) (124) (124) (124) (126) (126) (126) (126) (126) (126) (126) (126) (126) (126) (126) (110) (110) (110) (110) (110) (110) (110) (110) (EU) (A26) (116) (116) (120) (120) (120) (120) (126) (A16) (110) (110) (110) (120) (120) (120) (120) (126) (126) (120) (120) (120) (120) (120) (120) (120) (110) (110) (110) (120) (120) (120) (120) (126) (126) (110) (110) (110) (126) (126) (EG) (EG) (110) (110) (110) (110) (126) (126) (126) (EG) (EG) (A16) (110) (110) (110) (126) (126) (126) (EG) (EG) (A16) (110) (110) (110) (126) (126) (126) (EG) (EG) (A16) (110) (10) (</pre>			(IZG) (m1II)	(IZG (m1)) (IZG	(110) (110)	(110)	(TIU) (m2C)		(EG) (DOII)
<pre>(120) (120) (110) (110) (110) (116) (110) (</pre>				(IIU) (II)) (IIU)) (m1u)) (Ale	J) (IZG) I) (m1II)	(IZG) (m1C)	(IZG) (m1C)	(IZU) (m1C)
<pre>(EG) (EG) (E20) (E0) (E0) (E0) (E0) (E0) (E0) (E0) (E</pre>			(TZU)	(TZU) (TIU) (TIU) (TTU) (mou)	(TIG)	(TIG)	(TIG)
<pre>(F10) (F10) (F10) (F10) (F10) (F10) (F10) (F10) (E0) (E0) (A2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (A1G) (EG) (EG) (T2G) (T2G) (T2G) (A2U) (EG) (T2G) (A1G) (T1U) (T1U) (T2U) (T2U) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T1U) (EG) (EG) (EG) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues *********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845-94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -1.98855 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 11.98455 -9.48463 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 11.98455 -9.48463 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 11.98455 -9.48463 Alpha occ. eigenvalues21.93240 -21.8345 -11.98455 - 21.98457 -9.48457 Alpha occ. eigenvalues21.93240 -21.8345 -11.98455 - 21.98457 -9.48457 Alpha occ. eigenvalues21.93240 -21.838 -7.21858 -7.21858 -7.21858 -7.21858 -7.21858 -7.21858 -7.21858 -7.21858 -7.21858 -7.21858 -7.21858 -7.21136 -7.211</pre>			(EG) (E111)	(EG)	(TZU)	(TZU)	(TZU)	(TZG) (m1 II)	(TZG) ((TZG)
<pre>(E0) (A2G) (T1G) (T1G) (T1G) (T2O) (T2O) (T2O) (A1G) (EG) (EG) (T2G) (T2G) (A2U) (EG) (T2G) (A1G) (T1U) (T1U) (T2U) (T2U) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T1U) (T2O) (T2O) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (EG) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues **********437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 11.98455 -9.48463 Alpha occ. eigenvalues21.93240 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues72.1858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135</pre>			(TTU)) (TIU) (AZU) (TIU) (TIU)	(TTU)	(TTU)	(EU)
<pre>(AIG) (EG) (EG) (T2G) (T2G) (T2G) (A2U) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (AIG) (T1U) (T1U) (T1U) (AIG) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T2G) (T2G) (EG) (EG) (T2G) (T2G) (T2G) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (AIG) (T1U) (T1U) (T1U) (AIG) (AIG) (AIG) (AIG) The electronic state is 1-AIG. Alpha occ. eigenvalues ********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135</pre>			(EU)	(AZG)	(TIG)	(TIG)	(TIG)	(TZU)	(TZU)	(TZU)
<pre>(EG)</pre>	(50)		(AIG)	(EG)	(EG)	(T2G)	(12G)	(12G)	(A2U) ((EG)
<pre>(T10) (T10) (T10) (T20) (T20) (T20) (T26) (T26) (T26) (A16) (T10) (T10) (T10) (A16) (E6) (E6) (T10) (T10) (T10) (A20) (T20) (T20) (T20) (T26) (T26) (T26) (T26) (T10) (T10) (T20) (T26) (E6) (A16) (T10) (T10) (T10) (T10) (T26) (T26) (E6) (E6) (A16) (T10) (T10) (T10) (T26) (T26) (T26) (E6) (E6) (A16) (T10) (T10) (T10) (A16) (T10) (T10) (T10) (A16) (A16) (A16) (A16) (A16) The electronic state is 1-A16. Alpha occ. eigenvalues ********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues72.1858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135</pre>	(EG)		((= 1	·) (m1			(=0)	(=0.0)	(=0.0)
<pre>(T2G) (AIG) (T1U) (T1U) (T1U) (AIG) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (A2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (AIG) (T1U) (T1U) (T1U) (AIG) (AIG) (AIG) (AIG) (AIG) The electronic state is 1-AIG. Alpha occ. eigenvalues ********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135</pre>			(TIU)	(110) (TIU) (T2U	J) (T2U)	(120)	(T2G)	(T2G)
<pre>(T10) (T10) (T10) (A20) (T20) (T20) (T20) (T26) (T26) (T26) (T10) (T10) (T10) (E6) (E6) (A16) (T10) (T10) (T10) (T10) (E7) (E6) (E6) (E6) (A16) (T10) (T10) (T10) (T26) (T26) (T26) (E6) (E6) (A16) (T10) (T10) (T10) (A16) (T10) (T10) (T10) (A16) (A16) (A16) (A16) (A16) The electronic state is 1-A16. Alpha occ. eigenvalues *************437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135</pre>			(T2G)	(AIG) ('I'IU) ('I'I') ('I'I')	(AIG)	(EG)	(EG)
(T2G) (T2G) (T1U) (T1U) (T1U) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (AIG) (T1U) (T1U) (T1U) (AIG) (T1U) (T1U) (T1U) (AIG) (AIG) (AIG) (AIG) (AIG) The electronic state is 1-AIG. Alpha occ. eigenvalues ********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135			('T'TU)	('I'I')) (TIU) (A2U) (T2U)	(T2U)	(120)	(TZG)
(T10) (T10) (T10) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T10) (T10) (T10) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T10) (T10) (T10) (A1G) (T10) (T10) (T10) (A1G) (A1G) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues ********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135			(T2G)	(T2G) ('I'IU) ('I'I') ('I'I')	(EG)	(EG) ((AIG)
<pre>(AIG) (TIU) (TIU) (TIU) (TZG) (TZG) (TZG) (EG) (EG) (AIG) (TIU) (TIU) (TIU) (AIG) (TIU) (TIU) (TIU) (AIG) (AIG) (AIG) (AIG) The electronic state is 1-AIG. Alpha occ. eigenvalues *********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135</pre>			('I'IU)	('1'10) ('I'IU) (126	G) (T2G)	(T2G)	(EG)	(EG)
<pre>(EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) (A1G) (A1G)</pre> The electronic state is 1-A1G. Alpha occ. eigenvalues ********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135			(AIG)	('1'10) ('I'I')) ('I'I'	J) (T2G)	(T2G)	(T2G)	(EG)
(T1U) (A1G) (A1G) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues ********-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135			(EG)	(A1G)	(T1U)	(T1U)	(T1U)	(A1G)	(T1U)	(T1U)
The electronic state is 1-A1G. Alpha occ. eigenvalues *******-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135			(T1U)	(A1G) (A1G) (A10	G) (A1G)	(A1G)		
Alpha occ. eigenvalues *******-437.58229-419.71174- 419.71174-419.71174 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	The e	electronic	state	is 1-	AlG.					
<pre>419./11/4-419./11/4 Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135</pre>	Alpha	a occ.eig	envalu	les	****	****-	437.582	229-419	9.71174	-
Alpha occ. eigenvalues102.86118-101.65848-101.65846- 101.65846-101.65845 Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	419.71	11/4-419.71	1/4		100	0 6 1 1 0	101 656		65046	
Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	Alpha	a occ. eig	envalu	les	-102.	80118-	.101.658	348-101	L.65846) —
Alpha occ. eigenvalues101.65845-101.65845 -94.46828 - 94.46828 -94.46828 Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	1U1.65	0846-IUI.65	845		1 0 1		101 (50		1 4 6 0 0 6	,
94.46828 -94.46828 Alpha occ. eigenvalues -79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues -21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues -11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues -9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues -7.21854 -7.21136 - 7.21136 -7.21135	Alpha	a occ. eig	envalu	les	-101.	65845-	.101.658	345 -94	4.46828	5 –
Alpha occ. eigenvalues79.67096 -79.67096 -79.67046 - 79.67046 -79.67046 Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	94.468	328 -94.468	28		70	C700C				
79.67046 -79.67046 Alpha occ. eigenvalues -21.93240 -18.34345 -18.34345 18.34345 -11.98855 Alpha occ. eigenvalues -11.98855 -11.98455 -11.98455 11.98455 -9.48463 Alpha occ. eigenvalues -9.48460 -9.48460 -9.48457 9.48457 -9.48457 Alpha occ. eigenvalues -7.21858 -7.21858 -7.21858 7.21858 -7.21858 -7.21136 -7.21136 -7.21136	Alpha	a occ. eig	envalu	les	-/9.	67096	-/9.6/(196 - /9	9.6/046) –
Alpha occ. eigenvalues21.93240 -18.34345 -18.34345 - 18.34345 -11.98855 Alpha occ. eigenvalues11.98855 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	/9.6/()46 -/9.6/0	46		0.1		10 040			
18.34345 -11.98855 Alpha occ. eigenvalues - 11.98455 -9.48463 Alpha occ. eigenvalues - 9.48457 -9.48457 Alpha occ. eigenvalues - 7.21858 -7.21858 -7.21858 Alpha occ. eigenvalues - 7.21858 -7.21858 -7.21136 7.21136 -7.21135	Alpha	a occ. eig	envalu	les	-21.	93240	-18.343	345 -18	3.34345) —
Alpha occ. eigenvalues11.98855 -11.98455 -11.98455 - 11.98455 -9.48463 Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	18.343	345 -11.988	55				11 00			
Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	Alpha	a occ. eig	envalu	les	-11.	98855	-11.984	155 -11	L.98455) —
Alpha occ. eigenvalues9.48460 -9.48460 -9.48457 - 9.48457 -9.48457 Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	11.984	455 - 9.484	63		0	10100	0 4 0 4			,
9.4845/ -9.4845/ Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	Alpha	a occ.eig	enva⊥u 7	les	-9.	48460	-9.484	100 - <u>9</u>	9.48457	_
Alpha occ. eigenvalues7.21858 -7.21858 -7.21858 - 7.21858 -7.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	9.4845	o/ -9.4845	/		_	01050			1 01050	
/.21858 -/.21858 Alpha occ. eigenvalues7.21854 -7.21136 -7.21136 - 7.21136 -7.21135	Alpha	a occ.eig	enva⊥u	les	- / .	21828	-/.218	358 -	.21858	5 –
Aipna occ. eigenvalues/.21854 -/.21136 -/.21136 - 7 21136 -7 21135	/.2185	00 -/.2185	ŏ		-				7 01107	
	ALpha 7 2113	a occ. eig 36 _7 2112	enva⊥u 5	les	- / .	21854	-/.211	136 -	.21136	· -
Alpha occ. eigenvalues	 -7.21135	-7.21135	-7.21135	_						
---	--------------	----------	------------	---						
7.21135 -7.21135										
Alpha occ. eigenvalues	 -7.21133	-7.21133	-7.21133	-						
3.42006 -3.42006										
Alpha occ. eigenvalues	 -3.42006	-3.41627	-3.41627	-						
3.41627 -3.41154										
Alpha occ. eigenvalues	 -3.20767	-2.07611	-2.07611	-						
2.07611 -0.79746										
Alpha occ. eigenvalues	 -0.77930	-0.77930	-0.77672	-						
0.77672 -0.77672										
Alpha occ. eigenvalues	 -0.43028	-0.43028	-0.41422	_						
0.41422 -0.41422										
Alpha occ. eigenvalues	 -0.38636	-0.33931	-0.33931	-						
0.33931 -0.29286										
Alpha occ. eigenvalues	 -0.29286	-0.29286	-0.28702	-						
0.28702 -0.28702										
Alpha occ. eigenvalues	 -0.28275	-0.28275	-0.28275	-						
0.27140 -0.27140										
Alpha occ. eigenvalues	 -0.27140									
Alpha virt. eigenvalues	 -0.12350	-0.12350	0.12910							
0.15794 0.15794										
Alpha virt. eigenvalues	 0.15794	0.19625	0.19625							
0.20678 0.23974										
Alpha virt. eigenvalues	 0.23974	0.23974	0.30480							
0.30480 0.30480	0 40100	0 40400	0 40 6 7 0							
Alpha virt. eigenvalues	 0.43183	0.43183	0.43670							
0.436/0 0.436/0	0 44074	0 47007	0 47027							
Alpha virt. eigenvalues	 0.449/4	0.4/93/	0.4/93/							
0.4/93/ 0.53055										
Alpha VIIC. ergenvalues	 0.55055	0.55055	0.00200							
Alpha wirt oigonwaluos	 0 61943	0 61943	0 61943							
Λ Γ	0.01945	0.01943	0.01945							
Alpha wirt eigenvalues	 0 69255	0 69255	0 69255							
0 71745 0 71745	0.09233	0.09200	0.09233							
Alpha virt, eigenvalues	 0.71745	0.78049	0.78049							
0.78049 0.80795	0.71710	0.,0019	0.,0019							
Alpha virt. eigenvalues	 0.89358	0.89358	0.89358							
0.92727 0.92727										
Alpha virt. eigenvalues	 0.92790	0.93961	0.93961							
0.93961 0.94023										
Alpha virt. eigenvalues	 0.94023	0.94023	0.95769							
0.96705 0.96705										
Alpha virt. eigenvalues	 0.96830	0.96830	0.96830							
1.00239 1.08958										
Alpha virt. eigenvalues	 1.08958	1.17408	1.17408							
1.17408 1.17603										
Alpha virt. eigenvalues	 1.17603	1.17603	1.19745							
1.19745 1.19745										

Alpha virt. eigenvalues --1.23434 1.44128 1.44128 1.44128 1.54749 Alpha virt. eigenvalues --1.54999 1.54999 1.75760 1.75760 1.75760 Alpha virt. eigenvalues --2.67569 2.75715 2.75715 2.75715 3.02636 Alpha virt. eigenvalues --3.02636 3.02636 3.03835 3.03835 3.03835 Alpha virt. eigenvalues --3.27427 3.27427 5.33624 7.06218 7.06218 Alpha virt. eigenvalues --7.06218 14.55243 14.55243 14.55243 14.71416 Alpha virt. eigenvalues --14.71416 22.27823 39.84732 39.84732 39.84732 Alpha virt. eigenvalues --89.95852 89.95852 89.95852 90.04589 90.04589 Alpha virt. eigenvalues -- 104.46728 234.40143 234.40143 234.40143 455.66079 Alpha virt. eigenvalues --1328.538651328.538651328.538651661.614915146.10521 Condensed to atoms (all electrons): 1 2 3 4 5 6 0.196741 76.871706 0.196741 0.196741 0.196741 1 Pt 0.196741 2 Cl 0.196741 17.194420 -0.015756 -0.015756 -0.015756 -0.015756 -0.015756 3 Cl 0.196741 -0.015756 17.194420 -0.015756 -0.003495 -0.015756 4 Cl 0.196741 -0.015756 17.194420 -0.003495 -0.015756 0.196741 -0.015756 -0.015756 -0.003495 5 Cl 17.194420 -0.015756 6 Cl 0.196741 -0.015756 -0.003495 -0.015756 -0.015756 17.194420 0.196741 -0.003495 -0.015756 -0.015756 -0.015756 7 Cl -0.015756 7 1 Ρt 0.196741 2 Cl -0.003495 3 Cl -0.015756 4 Cl -0.015756 5 Cl -0.015756 6 Cl -0.015756 7 Cl 17.194420 Mulliken atomic charges: 1 Pt 1 -0.052152 Cl 2 -0.324641

4

5

7

1 2

3

4 5

6 7

-2.00000

Charge=

Х=

XX=

-130.7243 XY =

XX=

XY=

XXX=

XXY=

0.0000

Ang):

0.0000

0.0000

3 Cl -0.324641 Cl -0.324641 Cl -0.324641 6 Cl -0.324641 Cl -0.324641 Sum of Mulliken atomic charges = -2.00000Mulliken charges with hydrogens summed into heavy atoms: 1 Pt -0.052152 Cl -0.324641 Cl -0.324641 Cl -0.324641 Cl -0.324641 Cl -0.324641 Cl -0.324641 Sum of Mulliken charges with hydrogens summed into heavy atoms = 2382.8298 Electronic spatial extent (au): <R**2>= -2.0000 electrons Dipole moment (field-independent basis, Debye): 0.0000 Y= 0.0000 Z =0.0000 0.0000 Tot= Quadrupole moment (field-independent basis, Debye-Ang): -130.7243 -130.7243 YY= ZZ =0.0000 XZ =0.0000 YZ =Traceless Quadrupole moment (field-independent basis, Debye-0.0000 0.0000 YY =ZZ =0.0000 XZ= 0.0000 YZ= Octapole moment (field-independent basis, Debye-Ang**2): 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 0.0000 XXZ= 0.0000 XZZ= 0.0000 0.0000 XYZ= 0.0000

0.0000 YZZ= YYZ= Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1132.2790 YYYY= -1132.2790 ZZZZ= -1132.2790 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY=0.0000 XXYY= -360.5399 XXZZ= -360.5399 YYZZ= -360.5399 0.0000 YYXZ= 0.0000 ZZXY= XXYZ= 0.0000 N-N= 2.394392993762D+03 E-N=-5.262142356470D+04 KE=

2.004828796335D+04

```
Symmetry AG KE= 1.016728155800D+04
 Symmetry B1G KE= 6.706929152014D+02
 Symmetry B2G KE= 6.706929152014D+02
 Symmetry B3G KE= 6.706929152014D+02
 Symmetry AU KE= 9.568189544165D+01
 Symmetry B1U KE= 2.591081921435D+03
 Symmetry B2U KE= 2.591081921435D+03
 Symmetry B3U KE= 2.591081921435D+03
 Calculating spin-rotation constants.
 Leave Link 601 at Sat Nov 30 20:53:53 2013, MaxMem= 104857600
           3.0
cpu:
 (Enter C:\G09W\19999.exe)
 1|1|UNPC-DHRT3V4J|SP|RPBE1PBE|Gen|C16Pt1(2-)|PC2|30-Nov-
2013|0||#p pbe
 lpbe/gen nmr=giao integral(ultrafine) SCRF(solvent=water)
SCF (NoVarAcc
 , maxcycles=1000) | |PtCl62-SARCZORA| |-
2,1|Pt,0,0.,0.,0.|Cl,0,0.,0.,2.396
1|C1,0,0.,2.3961,0.|C1,0,-
2.3961,0.,0.|Cl,0,2.3961,0.,0.|Cl,0,0.,-2.39
 61,0.|C1,0,0.,0.,-2.3961||Version=IA32W-G09RevB.01|State=1-
A1G|HF=-200
 75.5098875|RMSD=1.932e-
009|Dipole=0.,0.,0.|Quadrupole=0.,0.,0.,0.,0.,0
 .|PG=OH [O(Pt1), 3C4(Cl1.Cl1)]||@
```

BE NOT THE FIRST BY WHOM THE NEW ARE TRIED, NOR YET THE THE LAST TO LAY THE OLD ASIDE.

-- ALEXANDER POPE Job cpu time: 0 days 0 hours 8 minutes 46.0 seconds. File lengths (MBytes): RWF= 57 Int= 0 D2E= 0 Chk= 4 Scr= 1 Normal termination of Gaussian 09 at Sat Nov 30 20:53:53 2013.