Electronic Supplementary Information

Synthesis and f-element ligation properties of CMPO-decorated pyridine N-oxide platforms.

Sabrina Ouizem,[†] Daniel Rosario-Amorin,[†] Diane A. Dickie,[†] Robert T. Paine,^{*†} A. de Bettencourt-Dias,[†] Benjamin P. Hay,[‡] Julien Podair[‡] and Lætitia H. Delmau[‡]

[†]Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States, ¹Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States and [‡]Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, United States

Table of Contents

Selected Characterization Data for Compounds 6-18		page 4
S.1	¹ H NMR spectrum for 9	page 4
S.2	¹³ C NMR spectrum for 9	page 5
S.3	DEPT 135 NMR spectrum for 9	page 6
S.4	HMQC NMR spectrum for 9	page 7
S.5	HRMS spectrum for 9	page 8
S.6	¹ H NMR spectrum for 10 in CDCl ₃	page 9
S.7	¹ H NMR spectrum for 10 in <i>d</i> ₄ -MeOH	page 10
S.8	³¹ P NMR spectrum for 10 in CDCl ₃	page 11
S.9	³¹ P NMR spectrum for 10 in <i>d</i> ₄ -MeOH	page 12
S.10	¹³ C NMR spectrum for 10	page 13
S.11	DEPT 135 NMR spectrum for 10	page 14
S.12	HMQC NMR spectrum for 10	page 15
S.13	HRMS spectrum for 10	page 16
S.14	¹ H NMR spectrum for 6 in CDCl ₃	page 17

S.15	¹ H NMR spectrum for 6 in <i>d</i> ₄ -MeOH	page 18
S.16	³¹ P NMR spectrum for 6 in CDCl ₃	page 19
S.17	³¹ P NMR spectrum for 6 in <i>d</i> ₄ -MeOH	page 20
S.18	¹³ C NMR spectrum for 6	page 21
S.19	DEPT 135 NMR spectrum for 6	page 22
S.20	HMQC NMR spectrum for 6	page 23
S.21	HRMS spectrum for 6	page 24
S.22	¹ H NMR spectrum for 12	page 25
S.23	³¹ P NMR spectrum for 12	page 26
S.24	¹³ C NMR spectrum for 12	page 27
S.25	DEPT 135 NMR spectrum for 12	page 28
S.26	HRMS spectrum for 12	page 29
S.27	¹ H NMR spectrum for 13 in CDCl ₃	page 30
S.28	¹ H NMR spectrum for 13 in <i>d</i> ₄ -MeOH	page 31
S.29	³¹ P NMR spectrum for 13 in CDCl ₃	page 32
S.30	³¹ P NMR spectrum for 13 in <i>d</i> ₄ -MeOH	page 33
S.31	¹³ C NMR spectrum for 13	page 34
S.32	DEPT 135 NMR spectrum for 13	page 35
S.33	HMQC NMR spectrum for 13	page 36
S.34	HRMS spectrum for 13	page 37
S.35	¹ H NMR spectrum for 7 in CDCl ₃	page 38
S.36	¹ H NMR spectrum for 7 in <i>d</i> ₄ -MeOH	page 39
S.37	³¹ P NMR spectrum for 7 in CDCl ₃	page 40
S.38	³¹ P NMR spectrum for 7 in <i>d</i> ₄ -MeOH	page 41
S.39	¹³ C NMR spectrum for 7	page 42
S.40	DEPT 135 NMR spectrum for 7	page 43
S.41	HMQC NMR spectrum for 7	page 44
S.42	HRMS spectrum for 7	page 45
S.43	¹ H NMR spectrum for 15	page 46
S.44	¹³ C NMR spectrum for 15	page 47
S.45	DEPT 135 NMR spectrum for 15	page 48
S.46	¹ H NMR spectrum for 16	page 49
S.47	¹³ C NMR spectrum for 16	page 50
S.48	DEPT 135 NMR spectrum for 16	page 51
S.49	HRMS spectrum for 16	page 52
S.50	¹ H NMR spectrum for 17	page 53
S.51	¹³ C NMR spectrum for 17	page 54
S.52	DEPT 135 NMR spectrum for 17	page 55
S.53	HRMS spectrum for 17	page 56
S.54	¹ H NMR spectrum 18	page 57
S.55	³¹ P NMR spectrum for 18	page 58
S.56	¹³ C NMR spectrum for 18	page 59

S.57	DEPT NMR spectrum for 18	page 60
S.58	HRMS spectrum for 18	page 61
S.59	¹ H NMR spectrum for 8 in CDCl ₃	page 62
S.60	¹ H NMR spectrum for 8 in <i>d</i> ₄ -MeOH	page 63
S.61	³¹ P NMR spectrum for 8 in CDCl ₃	page 64
S.62	³¹ P NMR spectrum for 8 in <i>d</i> ₄ -MeOH	page 65
S.63	¹³ C NMR spectrum for 8	page 66
S.64	DEPT 135 NMR spectrum for 8	page 67
S.65	HRMS spectrum for 8	page 68
S.66	FTIR spectra of 9, 10 and 6	page 69
S.67	FTIR spectra 11, 12, 13 and 7	page 70
S.68	FTIR spectra of 18, 8	page 71
S.69	Spectroscopic Data Summary for 6-13, DPhCMPO, Ph ₂ NOPO, Ph ₂ NPO	page 72
S.70	Summary of analysis data for complexes	page 73
S.71	FTIR spectra of 6, 1:1 and 2:1 of 6/Ln(III) complexes	page 75
S.72	¹ H NMR spectrum for 6, 1:1 La(III)/Eu(III)/Lu(III) complexes in <i>d</i> ⁴ -MeOH	page 76
S.73	¹ H NMR spectrum for 6, 1:1 Er(III) & Yb(III) complexes in <i>d</i> ⁴ -MeOH	page 77
S.74	³¹ P NMR spectrum for 6, 1:1 Eu(III)/La(III)/Lu(III)/Er(III) complexes in d^4 -MeOH	page 78
S.75	FTIR spectra of 13, 1:1 La(III) and 1:1 Ln(III) complexes	page 79
S.76	¹ H NMR spectrum for 13, 1:1 La(III) & 1:1 Eu(III) complexes in <i>d</i> ⁴ -MeOH	page 80
S.77	³¹ P NMR spectrum for 13, 1:1 La(III) & 1:1 Eu(III) complex in <i>d</i> ⁴ -MeOH	page 81
S.78	FTIR spectra of 7, 7/La(III) and 7/Ln(III), 1:1 complexes	page 82
S.79	¹ H NMR spectrum for 7, 1:1 La(III) & 1:1 Eu(III) complexes in <i>d</i> ⁴ -MeOH	page 83
S.80	¹ H NMR spectrum for 7, 1:1 Yb(III)/Pr(III)/CeCl ₃ /Dy(III) complexes in <i>d</i> ⁴ -MeOH	page 84
S.81	³¹ P NMR spectrum for 7, 1:1 Eu(III)/La(III)/CeCl ₃ (III) complexes in <i>d</i> ⁴ -MeOH	page 85
S.82	FTIR spectra of 8, 1:1 La(III) & Ln(III) complexes	page 86
S.83	¹ H NMR spectrum for 8, La(III) complex 1:1 in <i>d</i> ⁴ -MeOH	page 87
S.84	³¹ P NMR spectrum for 8, La(III) complex 1:1 in <i>d</i> ⁴ -MeOH	page 88
S.85	Vis-UV spectra of 6, 6/La(III) & 6/Ln(III), 1:1 complexes in MeOH	page 89
S.86	Vis-UV spectra of 7, 7/La(III) and 7/Ln(III), 1:1 complexes in MeOH	page 90
S.87	HRMS spectrum for {[Eu(7)(NO ₃) ₂ (EtOAc) _{0.5} (H ₂ O) _{0.5}] •(NO ₃)} ₂ •(MeOH)]	page 91
S.88	Emission intensity decay profiles for Eu(III) complexes with ligands 6	page 92
	and 7 in the solid state and methanol solution at 25°C.	
S.89	Computed lowest energy gas phase structure for a) 1:1 tetradentate (OPOC) $_{\rm 2}$	page 93
	binding of 18 on Eu(III), b) 1:1 pentadentate (OPOC)_2ON binding of 8 on Eu(III)	
S.90	Schematic views of coordination complexes of	page 94
	a) {[Yb(6)(NO ₃) ₃].(MeOH)} _n	
	b) {[Er(6) ₂ (H ₂ O) ₂](NO ₃) ₃ .(H ₂ O) ₄ } _n	
	c) {[Eu(7)(NO ₃) ₂ (EtOAc) _{0.5} (H ₂ O) _{0.5}] (NO ₃)} ₂ •(MeOH)	
	d) [Dy ₃ (7) ₄ (NO ₃) ₄ (H ₂ O) ₂](NO ₃) ₅ .(MeOH) ₅ .(H ₂ O) ₂	

S.91 Parameter files for MM3 computations

S.1 ¹H NMR spectrum for 9, in CDCl₃

S.2 ¹³C NMR spectrum for 9, in CDCl₃

S.3 DEPT 135 NMR spectrum for 9, in CDCl₃

S.4 HMQC NMR spectrum for 9, in CDCl₃

S.5 HRMS spectrum for 9

S.6 ¹H NMR spectrum for 10, in CDCl₃

S.7 ¹H NMR spectrum for 10, in d_4 -MeOH

S.10 ¹³C NMR spectrum for 10, in CDCl₃

S.11 DEPT 135 NMR spectrum for 10, in CDCl₃

S.12 HMQC NMR spectrum for 10

S.13 HRMS spectrum for 10

S.14 1 H NMR spectrum for 6, in CDCl₃

S.16 ³¹P NMR spectrum for 6, in CDCl₃

S.18 ¹³C NMR spectrum for 6, in CDCl₃

S.19 135 DEPT NMR spectrum for 6, in CDCl₃

S.20 HMQC spectrum for 6

S.21 HRMS spectrum for 6

S.25 DEPT 135 NMR spectrum for 12, in CDCl₃

S.27 ¹H NMR spectrum for 13, in CDCl₃

S.28 ¹H NMR spectrum for 13, in d_4 -MeOH

S.31 ¹³C NMR spectrum for 13, in CDCl₃

S.32 DEPT 135 NMR spectrum for 13, in CDCl₃

S.33 HMQC spectrum for 13

S.34 HRMS spectrum for 13

S.35 ¹H NMR spectrum for 7, in CDCl₃

S.36 ¹H NMR spectrum for 7, in d_4 -MeOH

S.39 ¹³C NMR spectrum for 7, in CDCl₃

S.40 DEPT 135 NMR spectrum for 7, in CDCl₃

S.41 HMQC spectrum for 7

S.42 HRMS spectrum for 7

S.44 ¹³C NMR spectrum for 15, in CDCl₃

S.45 DEPT 135 NMR spectrum for 15, in $CDCl_3$

S.46 ¹H NMR spectrum for 16, in CDCl₃

S.47 13 C NMR spectrum for 16, in CDCl₃

S.48 DEPT 135 NMR spectrum for 16, in $CDCl_3$

S.50 ¹H NMR spectrum for 17, in CDCl₃

S.51 13 C NMR spectrum for 17, in CDCl₃

S.52 DEPT 135 NMR spectrum for 17, in $CDCl_3$

S.53 HRMS spectrum for 17

S.54 ¹H NMR spectrum for 18, in CDCl₃ / d_4 -MeOH

S.57 DEPT 135 NMR spectrum for 18, in CDCl₃ / d_4 -MeOH

S.58 HRMS spectrum for 18

S.59 ¹H NMR spectrum for 8, in CDCl₃ / d_4 -MeOH

S.60 ¹H NMR spectrum for 8, in d_4 -MeOH

S.61 ³¹P NMR spectrum for 8, in CDCl₃ / d_4 -MeOH

S.63 ¹³C NMR spectrum for 8, in CDCl₃ / d_4 -MeOH

S.64 DEPT 135 NMR spectrum for 8, in $CDCl_3 / d_4$ -MeOH

S.65 HRMS spectrum for 8

S.66 FTIR spectra of 9, 10 and 6

(i) **11**, (ii) **12**, (iii) **13**, (iv) **7**

S.67 FTIR spectra 11, 12, 13 and 7

S.68 FTIR spectra of 18, 8

Data		9	10	6	11	12	13	7	DPhCMPO	Ph₂NOPO	Ph₂NPO
IR, ν (cm⁻¹)	$v_{\sf NH}$	3201	3266	3254	-	3243	3282	3250	-	-	-
	ν_{co}	1686	1669	1669	-	1673	1672	1673	1630	-	-
	v_{NO}	-	-	1245	-	-	-	1246	-	-	-
	ν_{PO}	-	1177	1179	1189	1151 1174	1178	1173 1198	1205	1186	1184
³¹ P NMR, δ (ppm)		-	30.5	29.8	30.7	30.4	29.7 30.7	29.4 31.4	27.9	31.7	30.2
¹ H NMR δ (ppm), (J, Hz)	CICH₂C(O)	3.89	-	-	-	3.94	-	-	-	-	-
	P(O)CH ₂ C(O)	-	3.42 (12.9 Hz)	3.47 (13.5 Hz)	-	-	3.39 (13.0 Hz)	3.38 (13.0 Hz)	3.30 (15.7 Hz)	4.22 (14.0 Hz)	3.88 (14.2 Hz)
	PyrCH ₂ N(H)	4.30 (5.7 Hz)	4.44 (5.7 Hz)	4.51 (6.0 Hz)	3.70	4.26 (5.1 Hz)	4.32 (5.5 Hz)	4.39 (6.0 Hz)	-	-	-
	PyrCH₂P(O)	-	-	-	3.89 (14.1 Hz)	3.78 (14.1 Hz)	3.87 (14.5 Hz)	4.16 (13.5 Hz)	-	-	-
¹³ C NMR δ (ppm), (J, Hz)	CICH ₂ C(O)	42.0	-	-	-	42.4	-	-	-	-	-
	CICH ₂ C(O)	165.9	-	-	-	165.7	-	-	-	-	-
	P(O) <i>C</i> H ₂ C(O)	-	38.9 (60.0 Hz)	39.1 (59.1 Hz)	-	-	38.9 (60.0 Hz)	39.0 (59.5 Hz)	39.4 (60.9 Hz)	30.7 (66.0 Hz)	40.7 (64.0 Hz)
	P(O)CH ₂ <i>C</i> (O)	-	164.8 (4.4 Hz)	165.4	-	-	164.7 (3.9 Hz)	165.2	165.5 (5.0 Hz)	-	-
	PyrCH ₂ N(H)	44.0	45.1	39.3	47.2	44.0	44.9	39.7	-	-	-
	PyrCH₂P(O)	-	-	-	40.5 (64.3 Hz)	39.5 (64.0 Hz)	40.7 (64.1 Hz)	31.1 (66.4 Hz)	-	-	-

S.69 Spectroscopic Data Summary for 6-13, DPhCMPO, Ph₂NOPO, Ph₂NPO
S.70 Summary of analysis characterization for complexes

The 1:1 complexes were obtained from the addition of equimolar amounts (1 mmol) of metal nitrate (Pr, Eu, La, Yb) in MeOH (10 mL) to the ligand in MeOH (10 mL). The mixture was stirred for 2 h and evaporated to dryness. The resulting solid was vacuum-dried. Elemental analyses (CHN) and infrared spectra for representative samples were obtained, and selected samples were crystallized in order to obtain single crystals for X-ray diffraction analyses. $[Eu(6)(NO_3)_3]^{31}P{^1H}$ (121.49 MHz, d_4 -MeOH) δ –19.04. ¹H NMR (300 MHz, d_4 -MeOH) δ 5.71-5.77 (m, 4H, H_{10}), 5.94 (s, 2H, H_6), 7.01-7.03 (m, 4H, H_{aro}), 7.33 (t, $J_{HH} = 7.4$ Hz, 2H, Haro), 7.52-7.54 (m, 2H, Haro), 7.41-7.80 (m, 1H, Haro), 7.83 (t, J_{HH} = 7.7 Hz, 1H, Haro). Anal. Calcd for C₂₀H₁₉EuN₅O₁₂P·2H₂O: C 32.45, H 3.13, N 9.46. Found: C 32.11, H 3.10, N 9.37. FTIR (KBr, cm⁻¹) 1633 ($v_{C=0}$), 1228 (v_{N-0}), 1160 ($v_{P=0}$). [La(**6**)(NO₃)₃] ³¹P{¹H} (121.49 MHz, d_4 -MeOH) δ 35.85. ¹H NMR (300 MHz, d_4 -MeOH) δ 4.59 (s, 2H, H_6), 7.07 (pseudo t, $J_{\rm HH} = 5.0$ Hz, 1H, H_4), 7.44 (pseudo t, $J_{\text{HH}} = 3.8$ Hz, 2H, H_{12}), 7.51-7.57 (m, 4H, H_{11}), 7.64-7.69 (m, 2H, $H_{2,3}$), 7.79 (dd, $J_{\text{HH}} = 7.4$, 12.8 Hz, 4H, H_{10}), 8.31 (pseudo t, $J_{\text{HH}} = 3.4$ Hz, 1H, H_1). FTIR (KBr, cm^{-1}) 1634 ($v_{C=0}$), 1231 (v_{N-0}), 1160 ($v_{P=0}$). [Pr(6)(NO₃)₃] FTIR (KBr, cm⁻¹) 1633 ($v_{C=0}$), 1229 (v_{N-O}) , 1158 $(v_{P=O})$. [Er(6)(NO₃)₃] FTIR (KBr, cm⁻¹) 1637 $(v_{C=O})$, 1237 (v_{N-O}) , 1165 $(v_{P=O})$. $[Er(6)(NO_3)_3]^{31}P{^1H}$ (121.49 MHz, d_4 -MeOH) δ -81.30. Crystals $\{[Yb(6)(NO_3)_3] \cdot (MeOH)\}_n$ grown by slow evaporation of MeOH at room temperature were suitable for crystallographic analysis. Anal. Calcd for C₂₀H₁₉N₅O₁₂P₁Yb₁: C 33.11, H 2.64, N 9.65. Found: C 33.08, H 2.91, N 9.44. FTIR (KBr, cm⁻¹) 1634 ($v_{C=0}$), 1229 (v_{N-0}), 1160 ($v_{P=0}$). [Lu(6)(NO₃)₃] ³¹P{¹H} (121.49) MHz, d₄-MeOH) δ 37.73. ¹H NMR (300 MHz, d₄-MeOH) δ 4.56 (s, 2H, H₆), 7.05-7.13 (m, 1H, H_4), 7.37-7.44 (m, 2H, H_{12}), 7.54-7.62 (m, 4H, H_{11}), 7.65-7.71 (m, 2H, $H_{2,3}$), 7.76-7.85 (m, 4H, H_{10}). {[Lu(6)(NO₃)₃]·(MeOH)}_n grown by slow evaporation of MeOH/CH₃CN 1:1 at room

temperature were suitable for crystallographic analysis. Anal. Calcd for C₂₀H₁₉Lu₁N₅O₁₂P₁: C 33.03, H 2.63, N 9.63. Found: C 32.88, H 2.46, N 9.48. FTIR (KBr, cm⁻¹) 1634 (v_{C=0}), 1223 (v_{N-1}) _O), 1161 ($v_{P=O}$). [Eu(13)(NO₃)₃], colorless powder: ³¹P{¹H} (121.5 MHz, d_4 -MeOH): δ –15.04. ¹H NMR (300 MHz, d_4 -MeOH): δ 1.72-1.94 (br s, 2H, H_1 or H_{13}), 2.44-2.68 (br s, 2H, H_1 or H_{13}), 6.05-6.15 (m, 4H, CH_{Ph}), 6.77-6.86 (m, 4H, CH_{Ph}), 6.95-7.02 (m, 4H, CH_{Ph}), 7.22-7.24 (m, 5H, H_4 and CH_{Ph}), 7.32 (t, $J_{HH} = 7.2$ Hz, 2H, H_{11} or H_{17}), 7.44 (t, $J_{HH} = 7.1$ Hz, 2H, H_{11} or H_{17}), 7.87 (t, $J_{HH} = 7.2$ Hz, 1H, H_4), 8.05 (d, $J_{HH} = 6.3$ Hz, 1H, H_3 or H_5); FTIR (KBr, cm⁻¹): 1630 $(v_{C=O})$, 1154 $(v_{P=O})$. [La(7)(NO₃)₃] ³¹P{¹H} (121.49 MHz, d₄-MeOH) δ 33.78, 36.35. FTIR (KBr, cm⁻¹) 1636 (v_{C=0}), 1215 (v_{N-0}), 1160 (v_{P=0}). [Ce(7)Cl₃] ${}^{31}P{}^{1}H{}$ (121.49 MHz, d₄-MeOH) δ 51.64, 59.70. FTIR (KBr, cm⁻¹) 1631 ($v_{C=0}$), 1215 (v_{N-0}), 1159 ($v_{P=0}$). [Pr(7)(NO₃)₃] FTIR (KBr, cm⁻¹) 1635 ($\nu_{C=0}$), 1215 (ν_{N-0}), 1158 ($\nu_{P=0}$). [Eu(7)(NO₃)₃], white powder: ³¹P{¹H} (121.49) MHz, d_4 -MeOH) δ –18.06, –35.47. HRMS (ESI) m/z (rel. inten. %): 437.7473 [Eu(7)₂⁺] (100). C₆₆H₆₀EuN₄O₈P₄ requires 437.7525. Anal. Calcd for C₃₃H₃₀EuN₅O₁₃P₂•2Et₂O: C 46.16, H 4.72, N 6.56. Found: C 45.66, H 3.92, N 6.68. FTIR (KBr, cm⁻¹): 1635 (v_{C=0}), 1211 (v_{N-0}), 1159 $(v_{P=O})$. [Yb(7)(NO₃)₃] FTIR (KBr, cm⁻¹) 1635 (v_{C=O}), 1211 (v_{N-O}), 1160 (v_{P=O}). [Ce(7)Cl₃] FTIR (KBr, cm^{-1}) 1631 ($v_{\text{C=O}}$), 1233 ($v_{\text{N-O}}$), 1159 ($v_{\text{P=O}}$). $[\text{Dy}(7)(\text{NO}_3)_3]$ FTIR (KBr, cm^{-1}) 1642 ($v_{\text{C=O}}$), 1231, 1215 (v_{N-O}), 1160 ($v_{P=O}$). [Eu(8)(NO₃)₃] FTIR (KBr, cm⁻¹) 1631 ($v_{C=O}$), 1231 (v_{N-O}), 1159, 1138 ($v_{P=0}$). [La(8)(NO₃)₃] ³¹P{¹H} (121.49 MHz, d_4 -MeOH) δ 37.40. ¹H NMR (300 MHz, d_4 -MeOH) δ 3.91 (d, 4H, J_{HP} = 12.6 Hz, H_6), 4.54 (s, 4H, H_4), 6.88-7.98 (m, CH_{aro}). FTIR (KBr, cm^{-1}) 1633 ($v_{C=0}$), 1249 (v_{N-0}), 1162, 1124 ($v_{P=0}$). [Pr(**8**)(NO₃)₃] FTIR (KBr, cm⁻¹) 1631 ($v_{C=0}$), 1230 (v_{N-O}), 1159, 1138 ($v_{P=O}$). [Yb(8)(NO₃)₃] FTIR (KBr, cm⁻¹) 1632 ($v_{C=O}$), 1221 (v_{N-O}), 1161, 1136, 1126 (v_{P=0}).

(i) **6**, (ii) 1:1 Eu-complex, (iii) {[Yb(**6**)(NO₃)₃]·(MeOH)}_n, (iv) 1:1 Pr-complex, (v) 1:1 La-complex, (vi) {[Lu(**6**)(NO₃)₃]·(MeOH)}_n, (vii) {[Er(**6**)₂(H₂O)₂]·(NO₃)₃·(H₂O)₄}_n

S.71 FTIR spectra of 6, 1:1 and 2:1 of 6 /Ln(III) complexes

S.72 ¹H NMR spectrum for 6 (a), 1:1 La(III) (b), 1:1 Eu(III) (c) and 1:1 Lu(III) (d) Complexes in d_4 -MeOH

S.73 ¹H NMR spectrum for 6 (a), 1:1 Er(III) complex (b) and 1:1 Yb(III) complex (c), in d_4 -MeOH

S.74 ³¹P NMR spectrum for 6 (a), 1:1 Eu(III) (b), 1:1 La (III), (c), 1:1 Lu(III) (d), 1:1 Er(III) (e) Complexes, in d_4 -MeOH

(i) 13, (ii) 1:1 Pr-complex, (iii) 1:1 Eu-complex, (iv) 1:1 Yb-complex, (v) 1:1 La-complex

S.75 FTIR spectra of 13, 1:1 La(III) complex and 1:1 Ln(III) complex

S.76 ¹H NMR spectrum for 13 (a), 1:1 La(III) complex (b) and 1:1 Eu(III) complex (c), in d_4 -MeOH

S.77 ³¹P NMR spectrum for 13 (a), and 1:1 La(III) complex (b) and 1:1 Eu(III) complex (c), in d_4 -MeOH

(i) 7, (ii) 1:1 Eu-complex, (iii) 1:1 Yb-complex, (iv) 1:1 Pr-complex, (v) 1:1 La-complex

S.78 FTIR spectra of 7, 1:1 La(III) complex and 1:1 Ln(III) complex

S.79 ¹H NMR spectrum for 7 (a), 1:1 La(III) complex (b) and 1:1 Eu(III) complex (c), in d_4 -MeOH

S.80 ¹H NMR spectrum for 7 (a), 1:1 Yb(III) (b), 1:1 Pr(III) (c), 1:1 CeCl₃ (d), 1:1 Dy(III) (e) Complexes in d_4 -MeOH

S.81 ³¹P NMR spectrum for 7 (a), 1:1 Eu(III) (b), 1:1 La(III) (c), 1:1 CeCl₃(III) (d) Complexes in *d*₄-MeOH

(i) 8, (ii) 1:1 Yb-complex, (iii) 1:1 Pr-complex, (iv) 1:1 Eu-complex, (v) 1:1 La-complex

S.82 FTIR spectra of 8, 1:1 La(III) complex and 1:1 Ln(III) complex

S.83 ¹H NMR spectrum for 8 (a) and 1:1 La(III) complex (b), in d_4 -MeOH

S.84 31 P NMR spectrum for 8 (a) and 1:1 La(III) complex (b), in d_4 -MeOH

S.85 Vis-UV spectra of 6, 6/La(III) and 6/Ln(III), 1:1 complexes in MeOH

S.86 Vis-UV spectra of 7, 7/La(III) and 7/Ln(III), 1:1 complexes in MeOH

S.87 HRMS spectrum for {[Eu(7)(NO₃)₂(EtOAc)_{0.5}[H₂O)_{0.5}]·(NO₃)}₂·(MeOH)

S.88 Emission intensity decay profiles for Eu(III) complexes with ligands 6 and 7 in the solid state and methanol solution at 25°C.

S.89 Computed lowest energy gas phase structure for a) 1:1 tetradentate (OPOC)₂ binding of 18 on Eu(III), b) 1:1 pentadentate (OPOC)₂ON binding of 8 on Eu(III).

S.90 Schematic views of coordination complexes of a) $\{[Yb(6)(NO_3)_3] \cdot (MeOH)\}_n$, b) $\{[Er(6)_2(H_2O)_2](NO_3)_3 \cdot (H_2O)_4\}_n$ c) $\{[Eu(7)(NO_3)_2(EtOAc)_{0.5}(H_2O)_{0.5}]$ (NO₃) $\}_2 \cdot (MeOH)$, d) $[Dy_3(7)_4(NO_3)_4(H_2O)_2](NO_3)_5 \cdot (MeOH)_5 \cdot (H_2O)_2$

S.91 Parameter files for MM3 computations

Molecular mechanics strain energy calculations were performed with an extended MM3 model as implemented in PCModel. The added parameter file used to treat these ligands and metal complexes is given below:

#torsions		_							
torsion		5	1	2 31	0	.000	+1	0.000 -2	-0.090 +3
torsion	T :	53	1	2 2	-0	. /00	+1	-0.200 -2	-0.550 +3
torsion	1:	53	1	2 37	-0	.700	+1	-0.200 -2	-0.550 +3
torsion		5	1	3 9	0	.000	+1	0.000 -2	-0.254 +3
torsion		1	1	3 9	-0	.457	+1	0.097 -2	-0.630 +3
torsion	1:	53	1	3 7	0	.000	+1	0.000 -2	-0.350 +3
torsion	1:	53	1	3 9	0	.185	+1	-2.296 -2	-0.923 +3
torsion		5	1	9 1	0	.000	+1	0.000 -2	0.936 +3
torsion		2	1 15	3 2	1	.100	+1	0.000 -2	1.500 +3
torsion		2	1 15	3 49	0	.000	+1	0.000 -2	0.270 +3
torsion		2	2	2 153	0	.000	+1	7.000 -2	0.000 +3
torsion		2	2 15	3 49	-0	.150	+1	0.000 -2	0.200 +3
torsion		1	2 3	7 2	-0	.610	+1	7.000 -2	0.000 +3
torsion		1	2 3	7 201	-0	.610	+1	7.000 -2	0.000 +3
torsion		2	2 3	7 201	0	000	+1	12 000 -2	0 000 + 3
torsion		5	2 3	7 201	0	000	+1	12.000 -2	0 000 +3
torsion		1	2 3	a 1	1	100	+1	6 270 -2	0.000 +3
torsion		1 7	3	0 1		600	· ⊥ ⊥1	6 930 -2	0.000 +3
torsion		0	2	7 2/5		.000	'⊥ ⊥1	0.300 -2	0.000 +3
torsion		9	5	7 245	0	.000	⊤⊥ ⊥1	0.200 -2	0.000 +3
torsion	2		3	/ 345	0	.000	+1	0.200 -2	0.000 +3
torsion	3,	45	49 15	3 1	0	.000	+1	0.000 -2	0.000 +3
torsion	3,	45	49 15	3 2	0	.000	+1	0.000 -2	0.000 +3
torsion	3,	45	49 15	3 3	0	.000	+1	0.000 -2	0.000 +3
torsion		2	37 20	1 345	0	.000	+1	-0.300 -2	0.000 +3
#vdw									
π Vuw vdw		315		1 60	0 0 9				
vuw	5	7	2	500	0.09				
vawpr	J	10	2	. 500	0.400				
vawbr	5	49		. 500	0.400				
#bonds									
bond	3	7	10.	1000	1.2230				
bond	3	9	6	7000	1 3310				
bond	49	153	8	7000	1 5000				
bond	37	201	о. 0	0000	1 3400				
bond	י ג ר	315	J. 1	0000	2 3900				
bond	10	245	1	0000	2.3900				
	49	345	1.	0000	2.3500				
bond	201	345	1.	0000	2.4000				
#bond angles	5								
angle	. 2	1	153	\cap	5000 1	09 50	000		
angle	ے 1	2		○ . ∩	4700 1	22 31	200		
angle	⊥ 2	2	153	1	0000 1	20 00			
angle	2	ے ح	715	⊥ • ∩	0600 I	12 20	200		
angle	с С	/ רכ	201	1	7300 1	21 7	200		
anyre	∠ 1⊑?) C	Z ∩ E	⊥. ^	1000 I	65 00	200		
angre	102	49	343 1	0.	1000 I		200		
angle	1	153	1 O	υ.	5000 I	08.50	000		
ang⊥e	Ţ	153	2	0.	5000 1	08.50	JUU		
angle	2	153	2	0.	5000 1	08.50	000		

1 153 49 0.5000 angle 111.5000 2 153 49 0.5000 111.5000 angle 37 201 345 132.0000 angle 0.1000 # Atom typing #aliphatic C 1 #benzene C 2 #carbonyl C 3 5 #CH hydrogen 7 #amide O #amide N 9 37 #pyridine N #P=O oxygen 49 #phosphorus 153 #N-O oxygen 201 #Ln metal 345 # NOTES ON M-O LENGTHS #Early LN (La, Pr, Nd) P=O 2.41; N-O 2.47; C=O 2.47 #Mid LN (Sm, Eu, Gd) P=O 2.35; N-O 2.39; C=O 2.40 #Late LN (Tm, Yb, Lu) P=O 2.24; N-O 2.30; C=O 2.29 Atomic coordinates and MM3 steric energies for species shown in Figures 5 and 6 45 Fig5a, global minimum for 6, E = 5.467 kcal/mol Ρ -1.577 1.186 -0.001 2.687 -1.155 3.759 0 0 1.495 2.877 0.197 0 -2.963 1.540 -0.460 Ν 2.826 -1.205 2.425 Ν 0.957 1.626 1.985 С 1.797 3.102 -2.375 С 3.237 -2.498 0.419 С 3.091 -1.373 -0.386 С 2.818 -0.158 0.241 С 2.685 -0.099 1.649 С 2.333 1.250 2.271 С 0.645 2.371 0.919 С -0.795 0.680 2.601 С -1.691 -0.052 1.365 С -0.717 -1.047 1.508 С -0.721 -1.884 2.625 С -1.696 -1.734 3.611 С 3.477 -2.678 -0.738 С 2.352 -2.668 0.106 С -0.660 0.456 -1.428 С -0.932 -0.858 -1.827 С -1.420 -0.265 -2.918 С 0.669 -0.669 -3.632 С 0.929 0.661 -3.256 С 0.254 1.222 -2.157

Н	0.200	1.169	2.518		
Η	3.218	-3.279	2.420		
Н	3.454	-3.480	-0.035		
Н	3 182	-1.438	-1.483		
ч	2 685	0 752	-0 367		
11 TT	2.000	1 220	2 271		
н	2.500	1.220	3.3/1		
Н	3.04/	2.015	1.888		
Η	-0.949	3.480	0.025		
Η	-1.309	2.934	1.601		
Η	0.068	-1.177	0.746		
Н	0.054	-2.662	2.729		
ч	-1 697	-2 396	<u> </u>		
11 TT	1.007 2.454	2.550	4 251		
н	-3.434	-0.010	4.251		
Н	-3.446	0.881	2.245		
Η	-1.678	-1.461	-1.283		
Η	-0.480	-2.460	-3.218		
Η	1.196	-1.112	-4.494		
Н	1.661	1.263	-3.820		
н	0 469	2 265	-1 871		
11	0.105	2.200	1.0/1		
1	5				
4、) ' -			10 010	1 1 / 1
E.	1g5(b), x-ray	conformation	OI 6, E =	12.013	KCal/mol
Ρ	-0.592	0.192	0.550		
Ν	3.710	2.822	0.078		
Ν	1.701	2.058	2.058		
Η	1.342	2.756	1.387		
0	2.834	3.829	0.229		
0	1 335	0 179	3 241		
0	0 695	0 188	-0 225		
0	0.095	0.100	1 040		
C	4.382	2.689	-1.040		
С	5.321	1.641	-1.262		
С	5.513	0.727	-0.223		
С	4.779	0.925	0.917		
С	3.915	1.956	1.022		
С	3.131	2.104	2.317		
C	0 927	1 059	2 4 9 4		
C	-0 481	1 108	2.043		
C	1 026	1.100	0 110		
C	-1.920	0.904	-0.440		
C	-3.252	0.938	-0.005		
С	-4.262	1.562	-0.742		
С	-3.952	2.240	-1.922		
С	-2.619	2.296	-2.369		
С	-1.606	1.667	-1.625		
С	-1.097	-1.550	0.895		
C	-0 625	-2 209	2 035		
C	_0 079	_3 539	2.000		
C	-0.978	-3.330	2.201		
C ~	-1./98	-4.224	1.303		
С	-2.262	-3.576	0.225		
С	-1.903	-2.238	-0.019		
Η	4.209	3.423	-1.846		
Н	5.871	1.552	-2.214		
Η	6.219	-0.116	-0.319		
Н	4 901	0.217	1.753		
ц	3 108	3 072	2 793		
п	5.400	5.012	2.190		

H H H H H H H H	3.432 -1.182 -0.843 -3.510 -5.306 -4.750 -2.370 -0.561 0.033 -0.604 -2.075	1.318 0.733 2.145 0.404 1.518 2.732 2.831 1.708 -1.686 -4.047	3.047 2.812 1.911 0.925 -0.390 -2.503 -3.301 -1.978 2.749 3.185		
H	-2.902	-4.116	-0.493		
Н	-2.262	-1.741	-0.936		
46 Fig5(Eu P	c), global -1.387 0.322	minimum -4.116 -0.916	Eu- 6 complex, -0.379 0.229	E = 11.818	kcal/mol
0	-3.663	-3.359	-0.181		
0	-1.346	-3.071	1.792		
O N	-0.11/	-2.141	-0.519		
N	-2.299	-1.056	2.116		
C	-4.893	-1.841	-1.481		
С	-5.548	-0.633	-1.688		
С	-5.587	0.308	-0.664		
C	-4.956	-0.011	0.539		
C	-4.312	-1.263	0.690		
C	-1.242	-1.860	2.032		
C	0.086	-1.199	1.948		
С	2.094	-0.541	-0.112		
С	3.090	-1.393	0.375		
С	4.437	-1.127	0.116		
C	4.798	-0.010	-0.640		
C	3.80Z 2.447	0.842	-1.147		
C	-0.721	0.535	-0.225		
С	-1.684	0.415	-1.230		
С	-2.493	1.503	-1.564		
С	-2.355	2.714	-0.885		
C	-1.392	2.841	0.131		
с н	-U.572 -2 145	⊥./4/ _0 037	U.45/ 2 132		
H	-4.868	-2.576	-2.304		
Н	-6.032	-0.420	-2.656		
Н	-6.096	1.277	-0.801		
Н	-4.964	0.718	1.366		
H	-4.281	-1.126	2.841		
Н U	-3.688	-2.667	2.218		
л Н	0.072	-1.033 -0.284	2.399 2.565		
H	2.820	-2.288	0.960		
Н	5.216	-1.804	0.504		

Η	5.862	0.198	-0.847			
Η	4.081	1.719	-1.755			
Η	1.674	1.237	-1.301			
Η	-1.814	-0.545	-1.758			
Н	-3.248	1.400	-2.362			
Н	-2.998	3.572	-1.149			
Η	-1.272	3.801	0.662			
Н	0.198	1.860	1.239			
71						
Fi	q6(a), qlobal	minimum	form of 7,	E =	7.643	kcal/mol
Ρ	-5.379	0.421	0.827			·
0	-0.333	2.864	0.643			
N	-0.494	2.877	-0.689			
С	-1.603	3.439	-1.259			
0	-6.843	0.724	0.687			
С	-1.783	3.503	-2.642			
P	1,627	-0.116	-0.914			
Ċ	-0.822	2 973	-3 494			
C	0.300	2.376	-2 922			
C	0.300	2.370	-1 516			
C	-5 181	-1 265	1 555			
\circ	1 314	-0 646	-2 285			
N	-3 102	2 900	0 574			
C	-5 259	_1 ///	2 9/0			
C	-5 136	-2 720	2.940			
C	-1.946	-2.720	2 670			
C	-4.940	-3.650	2.070			
C	-4.007	-3.001	1.275			
C	-5.010	-2.373	0.721			
C	-4.560	0.433	-0.828			
C	-3.225	0.037	-0.955			
C	-2.000	0.042	-2.202			
C	-3.306	0.445	-3.330			
	-4.045	0.007	-3.217			
C	-3.220	0 0 5 1	1 057			
C	-5.269	1 700	-1.957			
C	1.700	1.70Z	-0.950			
C	0.300	-0.713	0.293			
C	-0.343	-1.091	0.023			
C	-1.260	-2.393	0.949			
C	-1.4/6	-1./24	2.155			
C	-0./56	-0.551	2.442			
C	0.1//	-0.058	1.512			
C	3.288	-0.721	-0.383			
C	4.388	-0.543	-1.229			
C	5.639	-0.970	-0.836			
C	5.840	-1.5/9	0.40/			
C C	-4.350	2./84	1.035			
C	-2./00	3.952	-0.342			
C	4./40	-1./63	1.262			
C	3.462	-1.332	0.863			
С	-4.599	1.591	1.876			
H	-2.696	3.952	-3.067			
Η	-0.951	3.010	-4.589			

Η	1.076	1.937	-3.571		
Η	-2.376	2.196	0.795		
Η	-5.419	-0.581	3.607		
Н	-5.195	-2.852	4.589		
н	-4.853	-4.837	3 109		
ц	-4 748	-4 535	0 617		
л Ц	-1 072	-2 253	-0 375		
п	-4.972	-2.233	-0.373		
п	-2.655	-0.271	-0.063		
Н	-1.543	-0.262	-2.290		
Η	-2.810	0.453	-4.321		
Η	-5.204	1.188	-4.109		
Η	-6.317	1.183	-1.862		
Η	1.920	2.084	0.068		
Н	2.572	2.012	-1.571		
Н	-0.188	-2.424	-0.930		
Н	-1.822	-3.315	0.725		
н	-2.205	-2.118	2.883		
н	-0 912	-0.028	3 400		
ц П	0.763	0.020	1 763		
п	0.703	0.040	1.705		
п	4.257	-0.069	-2.210		
H	6.520	-0.827	-1.510		
Н	6.844	-1.91/	0./16		
Η	-3.566	4.307	-0.946		
Η	-2.319	4.838	0.216		
Η	4.877	-2.248	2.244		
	0 00 7	1 100	1 5 / 1		
Η	2.607	-1.489	1.341		
H H	2.607 -5.208	-1.489 1.829	2.768		
H H H	2.607 -5.208 -3.679	-1.489 1.829 1.184	2.768		
H H H	-5.208 -3.679	-1.489 1.829 1.184	2.768 2.339		
Н Н Н 71	2.607 -5.208 -3.679	-1.489 1.829 1.184	2.768 2.339		
H H H 71 Fi	2.607 -5.208 -3.679 g6(b). X-ray	-1.489 1.829 1.184	1.341 2.768 2.339	= 14.810	kcal/mol
H H H 71 Fi	2.607 -5.208 -3.679 .g6(b), X-ray -4.046	-1.489 1.829 1.184 conformation -0.415	1.341 2.768 2.339 of 7 , E =	= 14.810	kcal/mol
H H 71 Fi P	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709	-1.489 1.829 1.184 conformation -0.415 0.251	1.341 2.768 2.339 of 7 , E = -0.481	= 14.810	kcal/mol
H H 71 Fi P N	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.904	-1.489 1.829 1.184 conformation -0.415 0.251 2.592	1.341 2.768 2.339 of 7 , E = -0.481 -0.385	= 14.810	kcal/mol
H H 71 Fi P N	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592	1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485	= 14.810	kcal/mol
H H 71 Fi P N H	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 0.255	1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669	= 14.810	kcal/mol
H H 71 Fi P N H N	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.592	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 </pre>	= 14.810	kcal/mol
H H 71 Fi P N H N O	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743</pre>	= 14.810	kcal/mol
H H Fi P N H N O O	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904</pre>	= 14.810	kcal/mol
H H Fi P N H N O O O	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901</pre>	= 14.810	kcal/mol
H H 71 Fi P N H N O O O O	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765</pre>	= 14.810	kcal/mol
H H F I P N H N O O C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519</pre>	= 14.810	kcal/mol
H H H F I F P N H N O O O C C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865</pre>	= 14.810	kcal/mol
H H H F I P N H N O O O C C C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098</pre>	= 14.810	kcal/mol
H H H F I P N H N O O O C C C C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007</pre>	= 14.810	kcal/mol
H H H F F P N H N O O O C C C C C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225</pre>	= 14.810	kcal/mol
H H H H F P P N H N O O O C C C C C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371</pre>	= 14.810	kcal/mol
H H H F F P N H N O O O C C C C C C C C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162</pre>	= 14.810	kcal/mol
H H H H F F P N H N O O O O C C C C C C C C	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367 -4.102	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296 -1.011	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162 1.162</pre>	= 14.810	kcal/mol
HHH 7FPPNHNOOOOCCCCCCCC	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367 -4.102 5.000	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296 -1.011 1.102	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162 1.169 0.625</pre>	= 14.810	kcal/mol
HHH 7FPPNHNOOOOCCCCCCCCC	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367 -4.102 -5.089 5.7(1)	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296 -1.011 1.102 1.276	<pre> 1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162 1.169 -0.625 1.321</pre>	= 14.810	kcal/mol
HHH 7FPPNHNOOOOCCCCCCCCCC	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367 -4.102 -5.089 -5.761	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296 -1.011 1.102 1.376 2.545	<pre> 1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162 1.169 -0.625 -1.821 1.007 0.225 </pre>	= 14.810	kcal/mol
HHH 7FFPNHNOOOOCCCCCCCCCCC	2.607 -5.208 -3.679 -3.679 -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367 -4.102 -5.089 -5.761 -6.514	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296 -1.011 1.102 1.376 2.545	<pre> 1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162 1.169 -0.625 -1.821 -1.958 2.001 </pre>	= 14.810	kcal/mol
HHH 7FFPNHNOOOOCCCCCCCCCCC	2.607 -5.208 -3.679 -6.679 -5.208 -3.679 -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367 -4.102 -5.089 -5.761 -6.514 -6.591	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296 -1.011 1.102 1.376 2.545 3.457	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162 1.169 -0.625 -1.821 -1.958 -0.904</pre>	= 14.810	kcal/mol
HHH 7FFPNHNOOOOCCCCCCCCCCCC	2.607 -5.208 -3.679 .g6(b), X-ray -4.046 2.709 0.894 -1.615 -2.071 1.212 -3.934 -2.643 2.248 1.705 1.387 0.173 -0.621 -0.228 -1.208 -3.367 -4.102 -5.089 -5.761 -6.514 -6.591 -5.905	-1.489 1.829 1.184 conformation -0.415 0.251 -2.592 -1.326 -2.235 -2.247 -3.352 -0.082 0.622 -2.303 -2.670 -3.322 -3.552 -3.181 -3.402 -2.296 -1.011 1.102 1.376 2.545 3.457 3.197	<pre>1.341 2.768 2.339 of 7, E = -0.481 -0.385 0.485 1.669 1.484 1.743 0.904 -0.901 -1.765 -0.519 -1.865 -2.098 -1.007 0.225 1.371 1.162 1.169 -0.625 -1.821 -1.958 -0.904 0.296</pre>	= 14.810	kcal/mol

С	-4.747	-1.691	-1.614		
С	-3.945	-2.253	-2.613		
С	-4.469	-3.213	-3.481		
С	-5.800	-3.618	-3.356		
С	-6.611	-3.058	-2.354		
С	-6.079	-2.092	-1.481		
С	2.996	-1.543	-0.268		
С	4.254	1.174	0.021		
С	5.509	0.592	-0.196		
С	6.675	1.308	0.080		
С	6.600	2.615	0.565		
С	5.344	3.212	0.771		
С	4.171	2.488	0.492		
С	1.431	0.691	0.872		
С	0.114	0.939	0.472		
С	-0.871	1.217	1.421		
С	-0.555	1.224	2.781		
С	0.765	0.969	3.191		
С	1.759	0.706	2.231		
Η	2.065	-2.428	-2.701		
Н	-0.140	-3.615	-3.114		
Н	-1.604	-4.031	-1.152		
Н	-1.793	-4.333	1.190		
Н	-0.666	-3.582	2.327		
H	-3.695	-0.287	1.899		
Н	-5.141	-1.130	1.531		
H	-5.706	0.671	-2.667		
H	-7.046	2.749	-2.903		
H	-/.185	4.380	-1.013		
H	-5.959	3.918	1.129		
H	-4.614	1.829	1.3/4		
H	-2.892	-1.942	-2.716		
п	-3.830	-3.633	-4.204		
п u	-0.213	-4.300	-4.040		
п	-7.001 6.716	-3.300	-2.240		
п u	-0.710	-1.792	-0.090		
и Ц	3 759	-1 849	-1 013		
н	5 592	-0 437	-0 583		
Н	7.661	0.841	-0.088		
Н	7.522	3,180	0.782		
Н	5.278	4.247	1.148		
H	3.189	2,965	0.649		
Н	-0.152	0.922	-0.599		
Н	-1.901	1.436	1.093		
Н	-1.335	1.439	3.530		
Н	1.022	0.976	4.264		
Н	2.793	0.505	2.559		
72					
Fige	6(c), global	L minimum 1	Eu-7 complex,	E = 14.799	9 kcal/mol
Eu	1.999	-1.047	2.763		
Ρ	3.979	-0.911	-0.342		
0	1.797	1.313	3.223		

Ν	1.822	2.389	2.420
С	3.004	2.981	2.074
0	2.786	-1.113	0.546
С	3.059	4.108	1.249
P	-0 990	0 746	1 346
C	1 001	0.740	0 745
	1.091	4.004	1 074
C	0.682	4.052	1.074
C	0.6/1	2.911	1.906
С	4.188	-2.370	-1.450
0	0.031	-0.280	1.742
Ν	4.931	1.499	1.617
С	3.637	-2.355	-2.736
С	3.756	-3.469	-3.570
С	4.415	-4.614	-3.120
C	4 951	-4 646	-1 821
C	1 829	-3 522	_0 985
c	7.029	0 507	1 200
C	3.801	0.597	-1.380
C	2.754	1.489	-1.153
С	2.596	2.620	-1.957
С	3.506	2.884	-2.981
С	4.582	2.005	-3.204
0	4.305	-0.353	2.733
С	4.726	0.859	-2.403
С	-0.670	2.293	2.251
C	-0.922	1.049	-0.469
C	-0 266	0 133	-1 299
C	0.200	0.100	2 677
C	-0.203	0.340	-2.077
C	-0.809	1.4/2	-3.239
С	-1.487	2.388	-2.414
С	-1.546	2.169	-1.026
С	-2.674	0.157	1.813
С	-3.658	-0.038	0.837
С	-4.933	-0.477	1.200
С	-5.235	-0.729	2.540
C	4 837	0 173	1 762
C	4 324	2 410	2 578
C	-1 210	_0 544	2.570
	-4.249	-0.544	3.JZJ
C	-2.966	-0.102	3.156
C	5.399	-0.648	0.661
H	4.030	4.561	0.985
H	1.919	5.555	0.095
Н	-0.260	4.466	0.679
H	5.294	1.873	0.728
Н	3.099	-1.465	-3.103
Н	3.322	-3.446	-4.584
н	4 505	-5 496	-3 777
 Ц	5 150	-5 555	_1 /55
ц	5 996	-> 566	T.400
п 	5.230	-3.300	0.039
H	2.044	1.301	-0.331
H	1.747	3.302	-1.782
H	3.380	3.778	-3.615
Н	5.304	2.209	-4.012
Н	5.564	0.167	-2.589
Н	-0.712	2.094	3.342

Н	-1.492	3.010	2.046
Н	0.226	-0.754	-0.863
Н	0.331	-0.372	-3.321
Н	-0.756	1.642	-4.327
Н	-1.975	3.273	-2.855
Н	-2.092	2.882	-0.387
Н	-3.437	0.143	-0.227
Н	-5.703	-0.630	0.425
Н	-6.242	-1.078	2.825
Н	4.166	1.912	3.562
Н	5.019	3.253	2.794
Н	-4.479	-0.749	4.584
Н	-2.192	0.030	3.930
Н	5.858	-1.583	1.032
Н	6.242	-0.182	0.117