Diiron hexacarbonyl complexes as potential CO-RMs: their CO-releasing initiated by the substitution reaction with cysteamine and structural correlation to the bridging linkage

Xiujuan Jiang^a, Li Long^a, Hailong Wang^a, Limei Chen^b, Xiaoming Liu^{a, b*}

^aCollege of Biological, Chemical Sciences and Engineering

Jiaxing University

Jiaxing 314001, China

^bSchool of Metallurgy and Chemical Engineering

Jiangxi University of Science and Technology

Jiangxi 341000, China

Email: xiaoming.liu@mail.zjxu.edu.cn

Tel. / Fax: +86 (0)573 83643937

Fig. S1 Infrared spectral variation during the CO-releasing process of complex 3 ([3] = $0.011 \text{ mol } L^{-1}$ and [**CysA**] = $0.066 \text{ mol } L^{-1}$) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded from 1 min to 7 min in

DMSO at 37 °C.

Fig. S2 Infrared spectral variation during the CO-releasing process of complex 4 ([4] = $0.011 \text{ mol } L^{-1}$ and [CysA] = $0.066 \text{ mol } L^{-1}$) (top) and the intermediates in the

reaction mixture (bottom), when the reaction proceeded for 1 min (4-1), 3 min (4-2) and 7 min (4-3), respectively, in DMSO at 37 $^{\circ}$ C.

Fig. S3 Infrared spectral variation during the CO-releasing process of complex 7 ([7]

= 0.011 mol L⁻¹ and [**CysA**] = 0.066 mol L⁻¹) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded for 260 min (7-1) and 320 min (7-2), respectively, in DMSO at 37 °C.

Fig. S4 Infrared spectral variation during the CO-releasing process of complex 8 ([8]

= 0.011 mol L⁻¹ and [**CysA**] = 0.066 mol L⁻¹) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded for 260 min (8-1) and 320 min (8-2), respectively, in DMSO at 37 °C.

Fig. S5 Infrared spectral variation during the CO-releasing process of complex 9 ([9]

= 0.011 mol L⁻¹ and [**CysA**] = 0.066 mol L⁻¹) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded for 70 min (9-1) and 235 min (9-2), respectively, in DMSO at 37 °C.

Fig. S6 ¹H NMR spectra of the final decomposition product for complex 4 (CD₃Cl).

Fig. S7 ¹³C NMR spectra of the final decomposition product for complex 4 (CD₃Cl).

Fig. S8 Mass spectra of the final decomposition product for complex **4** (ESI, cation; the final decomposition product was obtained via the reaction of complex **4** with 6 equivalents of **CysA** under inert atmosphere at room temperature for 24 h).

Complex	Metal centre	k_{obs}	NAP charges (e)
1	${Fe_2}$		-3.16876
2	$\{Fe_2\}$	0.806	-3.17676
3	$\{Fe_2\}$	0.596	-3.16479
4	$\{Fe_2\}$	0.537	-3.16032
5	$\{Fe_2\}$	0.319	-3.20218
6	$\{Fe_2\}$	0.108	-3.20754
7	$\{Fe_2\}$	0.034	-3.27582
8	$\{Fe_2\}$	0.026	-3.26473
9	$\{Fe_2\}$	0.022	-3.25846

Table S1 DFT calculation results and the $k_{\mbox{\scriptsize obs}}$ of the compounds

Scheme S1 Possible pathways of substitution-initiated CO-releasing from complex **4** by **CysA** under inert atmosphere ⁴¹.