Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information of

Rhomboid-shaped Organic Host Molecule with Small Binding Space. Unsymmetrical and Symmetrical Inclusion of Halonium Ions

Yuji Suzaki, Takashi Saito, Tomohito Ide and Kohtaro Osakada*

Chemical Resources Laboratory R1-3, Tokyo Institute of Technology 4259 Nagatsuta, Midoriku, Yokohama 226-8503, Japan. Fax: +81-45-924-5224; Tel: +81-45-924-5224 E-mail: kosakada@res.titech.ac.jp

Computational Details

Ground state geometry optimization was performed by PBE38^{S1} density functional with TZVP (for H, C, N, Cl), LANL2TZ (for Zn, Ag) and LANL08 (for Br) basis sets. To improve computational speed, the RIJCOSX approximation in combination with TZV/J auxiliary basis set was applied. The computational method describe above denotes RIJCOSX-PBE38/TZVP in SI, but all PBE38/TZVP (and combination with LANL2TZ/LANL08) computation using approximation was denoted PBE38/TZVP due to simplify in the text. The PBE38 functional that includes 3/8 =37.5% Hartree-Fock exact exchange was chosen by results of preliminary calculations (Figure S1). TD-DFT vertical excitation energy was obtained by RIJCOSX-PBE38/TZVP with Tamm-Dancoff approximation (it denotes TDA-RIJCOSX-PBE38/TZVP). TD-DFT excited state geometry optimization was carried out by TDA-RIJCOSX-PBE38/TZVP level of theory. Stationary points of both ground and excited state were characterized by Hessian calculation. Potential energy curve was obtained by relax potential energy surface scan calculation that N-N distance is constrained at RIJCOSX-PBE38/TZVP level of theory. Excitation and fluorescent wavelength in solution were also consider single point TDA-RIJCOSX-PBE38/TZVP calculation with COSMO solvation model. All calculations were performed by ORCA $2.9.1^{s_2}$. The plots (isosurface = 0.02) of the frontier orbitals were drawn by VESTA 3.1.4^{S3}.

References

- (S1) Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- (S2) F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
- (S3) K. Momma and F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.
- (S4) F. Neese, A. Hansen and D. G. Liakos, J. Chem. Phys. 2009, 131, 064103.

Figure S1. Potential energy curves (N–Cl length) of selected preliminary calculation methods. RIJCOSX-PBE38/TZVP affords comparable result to the most accurate method in the preliminary calculations, LPNO-CCSD^{S4}/def2-TZVP(-f)//RIJCOSX-PBE38/TZVP.

Figure S2. Calculated HOMO (highest occupied molecular orbital) of (i) Cl⁺(cpeb), (ii) H⁺(cpeb), (iii) Br⁺(cpeb), (iv) Zn²⁺(cpeb), (v) Ag⁺(cpeb) and (vi) cpeb.

Figure S3. Calculated LUMO (lowest unoccupied molecular orbital) of (i) Cl⁺(cpeb), (ii) H⁺(cpeb), (iii) Br⁺(cpeb), (iv) Zn²⁺(cpeb), (v) Ag⁺(cpeb) and (vi) cpeb.

Figure S4. N–X (X = Cl⁺, Br⁺) length of (i) Cl⁺(cpeb) S0 state, (ii) Br⁺(cpeb) S0 state, (iii) Cl⁺(cpeb) S1 state and (iv) Br⁺(cpeb) S1 state.

	S1/nm	<i>f</i> (S1)	S2/nm	<i>f</i> (S2)	S3/nm	<i>f</i> (S3)
cepb	340.0	0.0000	304.7	0.8850	285.8	0.0000
H ⁺ (cpeb)	464.7	0.0632	356.7	0.3218	353.0	0.5103
Cl ⁺ (cpeb)	440.4	0.0579	347.6	0.3126	342.0	0.5265
Ag ⁺ (cpeb)	367.9	0.0000	307.4	0.8061	304.2	0.6563
Br ⁺ (cpeb)	392.0	0.0000	323.0	0.4666	309.6	0.7807
Zn ²⁺ (cpeb)	424.1	0.0000	378.2	0.0000	351.3	0.4494

Table S1. Calculated absorption wavelength of the compounds in gas phase.

Table S2. Calculated absorption wavelength of the compounds in CH₂Cl₂ (gas phase geometry).

	S1/nm	<i>f</i> (S1)	S2/nm	<i>f</i> (S2)	S3/nm	<i>f</i> (S3)
cepb	342.5	0.0000	301.8	0.8822	282.9	0.3410
H ⁺ (cpeb)	436.2	0.0788	342.2	0.4629	345.0	0.4770
Cl ⁺ (cpeb)	429.9	0.0627	339.0	0.5390	342.3	0.3928
Ag ⁺ (cpeb)	365.3	0.0000	304.8	0.8031	300.9	0.5332
Br ⁺ (cpeb)	388.4	0.0000	319.0	0.4677	308.2	0.7538
Zn ²⁺ (cpeb)	407.6	0.0000	332.2	0.3906	345.3	0.0000

	S0←S1/nm	<i>f</i> (S0←S1)
cepb	378.0	0.0000
H ⁺ (cpeb)	521.2	0.0371
Cl ⁺ (cpeb)	504.1	0.3646
Ag ⁺ (cpeb)	411.8	0.0000
Br ⁺ (cpeb)	457.7	0.0282
Zn ²⁺ (cpeb)	481.3	0.0000

Table S3. Calculated fluorescent wavelength of the compounds in gas phase.

Table S4. Calculated fluorescent wavelength of the compounds in CH₂Cl₂ (gas phase geometry).

	S0←S1/nm	<i>f</i> (S0←S1)
cepb	382.1	0.0000
H ⁺ (cpeb)	489.3	0.0000
Cl ⁺ (cpeb)	491.5	0.0394
Ag ⁺ (cpeb)	409.9	0.0000
Br ⁺ (cpeb)	453.3	0.0254
Zn ²⁺ (cpeb)	463.6	0.0000

Figure S5. UV-spectra of Ag(cpeb)OTf (r.t., 1.0×10^{-2} mM, generated in situ by reaction of cpeb and AgOTf in CH₂Cl₂ (10 mL)) before and after addition of Cl₂. Cl₂ gas, used in the measurement was generated by mixing 1 M HCl(aq) (10 mL) and 1 M NaOCl (5.0 mL)

Figure S6. Change in UV-vis spectra of Ag(cpeb)OTf (CH₂Cl₂, r.t., 1.0×10^{-2} mM, generated in situ by reaction of cpeb and AgOTf) by addition of Br₂ (~2.0×10⁻² mM).

Figure S7. Change in UV-vis spectra of cpeb (CH₂Cl₂, r.t., 1.0×10^{-2} mM) by addition of AgOTf (~ 2.0×10^{-2} mM).

Figure S8. Change in UV-vis spectra of cpeb (CH₂Cl₂, r.t., 1.0×10^{-2} mM) by addition of Pd(OCOCF₃)₂ (~4.0×10⁻² mM).

Figure S9. Change in UV-vis spectra of cpeb (CH₂Cl₂, r.t., 1.0×10^{-2} mM) by addition of Zn(OTf)₂ (~ 2.0×10^{-2} mM).

Figure S10. Change in UV-vis spectra of cpeb (CH₂Cl₂, r.t., 1.0×10^{-2} mM) by addition of TFA (~10 mM).

Figure S11. Job's plot of Br(cpeb)OTf obtained from absorption spectra (CH₂Cl₂, 25 °C, $\lambda_{abs} = 410$ nm, [cpeb]+[BrOTf] = 1.0×10^{-2} mM).

Figure S12. ¹H NMR spectrum of **3** (CDCl₃, 300 MHz, r.t.)

Figure S13. ¹³C{¹H} NMR spectrum of **3** (CDCl₃, 100 MHz, r.t.)

Figure S14. ¹H NMR spectrum of cpeb (CD₂Cl₂, 300 MHz, r.t.)

Figure S15. ¹³C{¹H} NMR spectrum of cpeb (CD₂Cl₂, 100 MHz, r.t.)