Supporting Information

Dicyanovinyl Substituted Triarylboranes- A Rational Approach to Distinguish Fluoride and Cyanide Ions

George Rajendra Kumar and Pakkirisamy Thilagar*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012,

India. Phone: +91-80-2293-3353, Fax: (+91) 8023601552, E-mail: thilagar@ipc.iisc.ernet.in.

Table of Contents:

1.	NMR Plots	-S2
2.	Solvent dependent UV-Vis absorption spectra	-S4
3.	Excitation Spectra	-S4
4.	NMR plots in presence of Anions	-85
5.	Binding Constant Fitting Data	-S7
6.	TD-DFT data	-88
7.	Bond length & Bond angle parameters	-S10
8.	Coordinates of optimised geometries	-S19
9.	Reference	-S24

Figure S1: ¹H NMR spectrum of **1**

Figure S2: ¹H NMR Spectrum of **2**

Figure S3: ¹³C NMR spectrum of **1**

Figure S4: ¹³C NMR spectrum of **2**

Figure **S5**: UV-Vis absorption spectrum of **1** and **2** in solvents of various polarity $(1 \times 10^{-5} \text{ M})$ The changes in absorption spectrum of **1** and **2** with respect to solvent polarity are negligible.

Figure S6: Absorption and Excitation spectrum of 1 ($\lambda_{em} = 509 \text{ nm}$).

Figure S7: Absorption and Excitation spectra of 2 (left; $\lambda_{em} = 381$ nm, right; $\lambda_{em} = 493$ nm).

NMR Spectra in presence of anions

Figure S8: ¹⁹F NMR spectrum of **1** in presense of 1 eq of TBAF. The signal at -173.2 ppm assigned to $(-C_6H_4)$ (Mes₂)B·F moiety (Mes = Mesityl group).

Figure S9: ¹⁹F NMR spectrum of **2** in presence of 1 eq of TBAF. The signal at -152.5 ppm assigned to $(-C_6(CH_3)_4)$ (Mes₂)B·F moiety (Mes = Mesityl group).

Figure S10: ¹H NMR titration of **1** against TBAF in CDCl₃ (2 μ L = 0.1 eq)

Figure S11: Predicted binding modes of 2 with cyanide.

Binding Constant Fitting Plots¹

Figure S12: : Fitting of UV-Vis absorption titration of 1 with fluoride (left, at $\lambda_{ab} = 334$ nm) and cyanide (right, at $\lambda_{ab} = 334$ nm)

Figure S13: Fitting of UV-Vis absorption titration of 1 with fluoride (left, at $\lambda_{ab} = 340$ nm) and cyanide (right, at $\lambda_{ab} = 340$ nm).

Figure S14: UV-Vis absorption spectrum of M1

TD-DFT data

Excitation energies and oscillator strengths: (for 1)

Excited State 1: Singlet-A 2.7214 eV 455.59 nm f=0.0295 HOMO to LUMO 0.70013 This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.8725 eV 431.62 nm f=0.0481 HOMO-1 to LUMO 0.70031

Excited State 3: Singlet-A 2.9545 eV 419.64 nm f=0.0637 HOMO-3 to LUMO -0.15657 HOMO-2 to LUMO 0.68321

Excited State 4: Singlet-A 2.9812 eV 415.89 nm f=0.0127 HOMO-3 to LUMO 0.68424 HOMO-2 to LUMO 0.15561

Excited State 5: Singlet-A 3.7727 eV 328.63 nm f=0.7562 HOMO-5 to LUMO -0.18304 HOMO-4 to LUMO 0.65624 HOMO-1 to LUMO -0.13379

Excited State 6: Singlet-A 3.8758 eV 319.89 nm f=0.0910 HOMO-5 to LUMO 0.66175 HOMO-4 to LUMO 0.16990 HOMO-4 to LUMO+2 0.13616

Excitation energies and oscillator strengths: (for 2)

Excited State 1: Singlet-A 3.2320 eV 383.62 nm f=0.0246 HOMO-2 to LUMO -0.39240 HOMO-1 to LUMO 0.13234 HOMO to LUMO 0.55190

This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2:	Singlet-A	3.2866 eV	377.24 nm	f=0.0082
HOMO-3 to LUN	AO 0.52	546		
HOMO-2 to LUN	40 -0.10)195		
HOMO-1 to LUN	AO -0.15	684		
HOMO to LUMO	0.40	995		
HOMO to LUMO	0+1 -0.12	2650		

Excited State 3:	Singlet-A	3.3978 eV	364.90 nm	f=0.2222
HOMO-5 to LUN	.0 OI	18405		
HOMO-3 to LUN	.0 O.	15406		
HOMO-2 to LUN	40 -0.	17060		
HOMO-1 to LUN	AO 0.0	52282		
HOMO-1 to LUN	<i>A</i> O+1 -0.	12805		

Excited State 4: Singlet-A 3.5036 eV 353.88 nm f=0.0068 HOMO-3 to LUMO 0.18565 HOMO-2 to LUMO 0.64913 HOMO-2 to LUMO+1 -0.13347 HOMO-1 to LUMO 0.14206

Excited State 5: Singlet-A 3.6003 eV 344.37 nm f=0.0287 HOMO-5 to LUMO -0.17754 HOMO -4 to LUMO 0.66091 HOMO-4 to LUMO+1 -0.14008

Excited State 6: Singlet-A 3.6562 eV 339.11 nm f=0.1073 HOMO-5 to LUMO 0.64768 HOMO-4 to LUMO 0.19588 HOMO-1 to LUMO -0.15103

Figure **S14**: Selected MO's (i) HOMO-4 of **1** (left) (ii) HOMO-5 of **2** (middle) (iii) HOMO-1 of **2** (right).

Number	Atom1	Atom2	Length
1	N2	C2	1.150(3)
2	N1	C1	1.146(3)
3	C2	C3	1.438(3)
4	C3	C4	1.352(3)
5	C3	C1	1.442(3)

Bond length parameters of 1 (Å)

6	C4	H4	0.931
7	C4	C5	1.454(2)
8	C5	C6	1.404(3)
9	C5	C10	1.405(3)
10	C6	H6	0.929
11	C6	C7	1.387(3)
12	C7	H7	0.93
13	C7	C8	1.407(3)
14	C8	С9	1.402(3)
15	C8	B1	1.578(3)
16	C17	C22	1.417(2)
17	C17	C18	1.415(2)
18	C17	B1	1.575(3)
19	C22	C21	1.398(3)
20	C22	C28	1.512(3)
21	C21	H21	0.93
22	C21	C20	1.385(3)
23	C20	C27	1.505(3)
24	C20	C19	1.395(3)
25	C27	H27A	0.96
26	C27	H27B	0.96
27	C27	H27C	0.96
28	C19	H19	0.93
29	C19	C18	1.398(3)
30	C18	C26	1.507(2)
31	C26	H26A	0.959
32	C26	H26B	0.96
33	C26	H26C	0.961
34	C28	H28A	0.959
35	C28	H28B	0.961
36	C28	H28C	0.96
37	C11	C16	1.418(3)
38	C11	C12	1.416(2)
39	C11	B1	1.575(3)
40	C16	C15	1.397(3)
41	C16	C25	1.504(2)
42	C15	H15	0.93
43	C15	C14	1.390(3)
44	C14	C13	1.389(3)
45	C14	C24	1.515(3)
46	C13	H13	0.93
47	C13	C12	1.393(3)
48	C12	C23	1.515(3)
49	C23	H23A	0.96
50	C23	H23B	0.96
51	C23	H23C	0.961

52	C24	H24A	0.959
53	C24	H24B	0.959
54	C24	H24C	0.961
55	C25	H25A	0.96
56	C25	H25B	0.96
57	C25	H25C	0.96
58	C9	H9	0.93
59	C9	C10	1.384(3)
60	C10	H10	0.93

Bond angle parameters of 1 (deg)

Number	Atom1	Atom2	Atom3	Angle
1	N2	C2	C3	176.8(2)
2	C2	C3	C4	125.8(2)
3	C2	C3	C1	114.0(2)
4	C4	C3	C1	120.1(2)
5	C3	C4	H4	115
6	C3	C4	C5	130.0(2)
7	H4	C4	C5	115
8	C4	C5	C6	124.4(2)
9	C4	C5	C10	117.0(2)
10	C6	C5	C10	118.5(2)
11	C5	C6	H6	119.7
12	C5	C6	C7	120.5(2)
13	H6	C6	C7	119.8
14	C6	C7	H7	119.3
15	C6	C7	C8	121.4(2)
16	H7	C7	C8	119.3
17	C7	C8	C9	117.4(2)
18	C7	C8	B1	120.9(2)
19	C9	C8	B1	121.7(2)
20	C22	C17	C18	118.2(2)
21	C22	C17	B1	121.4(2)
22	C18	C17	B1	120.3(2)
23	C17	C22	C21	119.7(2)
24	C17	C22	C28	121.7(2)
25	C21	C22	C28	118.4(2)
26	C22	C21	H21	119
27	C22	C21	C20	122.1(2)
28	H21	C21	C20	118.9
29	C21	C20	C27	121.1(2)
30	C21	C20	C19	118.2(2)
31	C27	C20	C19	120.6(2)
32	C20	C27	H27A	109.4
33	C20	C27	H27B	109.4

34	C20	C27	H27C	109.5
35	H27A	C27	H27B	109.5
36	H27A	C27	H27C	109.5
37	H27B	C27	H27C	109.5
38	N1	C1	C3	179.4(2)
39	C20	C19	H19	119.2
40	C20	C19	C18	121.5(2)
41	H19	C19	C18	119.3
42	C17	C18	C19	120.2(2)
43	C17	C18	C26	121.7(2)
44	C19	C18	C26	118.0(2)
45	C18	C26	H26A	109.5
46	C18	C26	H26B	109.4
47	C18	C26	H26C	109.4
48	H26A	C26	H26B	109.4
49	H26A	C26	H26C	109.5
50	H26B	C26	H26C	109.5
51	C22	C28	H28A	109.5
52	C22	C28	H28B	109.5
53	C22	C28	H28C	109.5
54	H28A	C28	H28B	109.5
55	H28A	C28	H28C	109.5
56	H28B	C28	H28C	109.4
57	C16	C11	C12	118.0(2)
58	C16	C11	B1	122.1(2)
59	C12	C11	B1	119.9(2)
60	C11	C16	C15	119.8(2)
61	C11	C16	C25	121.8(2)
62	C15	C16	C25	118.4(2)
63	C16	C15	H15	118.9
64	C16	C15	C14	122.2(2)
65	H15	C15	C14	118.9
66	C15	C14	C13	117.8(2)
67	C15	C14	C24	121.2(2)
68	C13	C14	C24	121.0(2)
69	C14	C13	H13	119
70	C14	C13	C12	122.0(2)
71	H13	C13	C12	119
72	C11	C12	C13	120.2(2)
73	C11	C12	C23	121.9(2)
74	C13	C12	C23	117.8(2)
75	C12	C23	H23A	109.5
76	C12	C23	H23B	109.4
77	C12	C23	H23C	109.5
78	H23A	C23	H23B	109.5
79	H23A	C23	H23C	109.5

80	H23B	C23	H23C	109.5
81	C14	C24	H24A	109.4
82	C14	C24	H24B	109.5
83	C14	C24	H24C	109.4
84	H24A	C24	H24B	109.5
85	H24A	C24	H24C	109.5
86	H24B	C24	H24C	109.5
87	C16	C25	H25A	109.5
88	C16	C25	H25B	109.4
89	C16	C25	H25C	109.4
90	H25A	C25	H25B	109.4
91	H25A	C25	H25C	109.5
92	H25B	C25	H25C	109.5
93	C8	C9	H9	119.1
94	C8	C9	C10	121.8(2)
95	Н9	C9	C10	119.1
96	C5	C10	C9	120.3(2)
97	C5	C10	H10	119.8
98	C9	C10	H10	119.9
99	C8	B1	C17	119.0(2)
100	C8	B1	C11	117.8(2)
101	C17	B1	C11	123.2(2)

Bond length parameters of 2 (Å)

Number	Atom1	Atom2	Length
1	B1	C8	1.5936(1)
2	B1	C17	1.5774(1)
3	B1	C11	1.5750(1)
4	N1	C1	1.1349(1)
5	N2	C2	1.1269(1)
6	C8	C9	1.4135(1)
7	C8	C7	1.4009(1)
8	C10	C9	1.3880(1)
9	C10	C5	1.4121(1)
10	C10	C26	1.5065(1)
11	C17	C22	1.4107(1)
12	C17	C18	1.4111(1)
13	C9	C25	1.5137(1)
14	C11	C16	1.4195(1)
15	C11	C12	1.4131(1)
16	C22	C21	1.3946(1)
17	C22	C32	1.5081(1)
18	C16	C15	1.3864(1)
19	C16	C29	1.5117(1)

20	C5	C6	1.3905(1)
21	C5	C4	1.4750(1)
22	C18	C19	1.3791(1)
23	C18	C30	1.5219(1)
24	C6	C7	1.4060(1)
25	C6	C23	1.5135(1)
26	C12	C13	1.3866(1)
27	C12	C27	1.5086(1)
28	C7	C24	1.5108(1)
29	C13	H13	0.9300(1)
30	C13	C14	1.3821(1)
31	C19	H19	0.9300(1)
32	C19	C20	1.3849(1)
33	C21	H21	0.9300(1)
34	C21	C20	1.3744(1)
35	C4	H4	0.9300(1)
36	C4	C3	1.3259(1)
37	C15	H15	0.9300(1)
38	C15	C14	1.3790(1)
39	C20	C31	1.5041(1)
40	C32	H32A	0.9600(1)
41	C32	H32B	0.9600(1)
42	C32	H32C	0.9600(1)
43	C26	H26A	0.9600(1)
44	C26	H26B	0.9600(1)
45	C26	H26C	0.9600(1)
46	C24	H24A	0.9600(1)
47	C24	H24B	0.9600(1)
48	C24	H24C	0.9600(1)
49	C29	H29A	0.9600(1)
50	C29	H29B	0.9600(1)
51	C29	H29C	0.9600(1)
52	C25	H25A	0.9600(1)
53	C25	H25B	0.9600(1)
54	C25	H25C	0.9600(1)
55	C3	C1	1.4423(1)
56	C3	C2	1.4247(1)
57	C27	H27A	0.9600(1)
58	C27	H27B	0.9600(1)
59	C27	H27C	0.9600(1)
60	C14	C28	1.4943(1)
61	C30	H30A	0.9600(1)
62	C30	H30B	0.9600(1)
63	C30	H30C	0.9600(1)

64	C23	H23A	0.9600(1)
65	C23	H23B	0.9600(1)
66	C23	H23C	0.9600(1)
67	C28	H28A	0.9600(1)
68	C28	H28B	0.9600(1)
69	C28	H28C	0.9600(1)
70	C31	H31A	0.9600(1)
71	C31	H31B	0.9600(1)
72	C31	H31C	0.9600(1)

Bond angle parameters of 2 (deg)

Number	Atom1	Atom2	Atom3	Angle
1	C8	B1	C17	120.38
2	C8	B1	C11	118.05
3	C17	B1	C11	121.57
4	B1	C8	С9	120.29
5	B1	C8	C7	120.51
6	C9	C8	C7	119.13
7	C9	C10	C5	118.98
8	C9	C10	C26	121.34
9	C5	C10	C26	119.61
10	B1	C17	C22	121.41
11	B1	C17	C18	121.06
12	C22	C17	C18	117.47
13	C8	C9	C10	120.71
14	C8	C9	C25	120.58
15	C10	C9	C25	118.58
16	B1	C11	C16	120.44
17	B1	C11	C12	122.44
18	C16	C11	C12	117.08
19	C17	C22	C21	119.76
20	C17	C22	C32	121.97
21	C21	C22	C32	118.09
22	C11	C16	C15	119.71
23	C11	C16	C29	122.72
24	C15	C16	C29	117.55
25	C10	C5	C6	121.28
26	C10	C5	C4	116.66
27	C6	C5	C4	122.06
28	C17	C18	C19	120.49
29	C17	C18	C30	122.65
30	C19	C18	C30	116.85
31	C5	C6	C7	118.98

32	C5	C6	C23	122.02
33	C7	C6	C23	118.98
34	C11	C12	C13	120.54
35	C11	C12	C27	121.89
36	C13	C12	C27	117.54
37	C8	C7	C6	120.68
38	C8	C7	C24	120.74
39	C6	C7	C24	118.53
40	C12	C13	H13	118.78
41	C12	C13	C14	122.45
42	H13	C13	C14	118.78
43	C18	C19	H19	118.85
44	C18	C19	C20	122.3
45	H19	C19	C20	118.85
46	C22	C21	H21	118.71
47	C22	C21	C20	122.58
48	H21	C21	C20	118.71
49	C5	C4	H4	116.89
50	C5	C4	C3	126.23
51	H4	C4	C3	116.89
52	C16	C15	H15	118.38
53	C16	C15	C14	123.24
54	H15	C15	C14	118.38
55	C19	C20	C21	117.36
56	C19	C20	C31	121.5
57	C21	C20	C31	121.13
58	C22	C32	H32A	109.47
59	C22	C32	H32B	109.47
60	C22	C32	H32C	109.47
61	H32A	C32	H32B	109.47
62	H32A	C32	H32C	109.47
63	H32B	C32	H32C	109.47
64	C10	C26	H26A	109.47
65	C10	C26	H26B	109.47
66	C10	C26	H26C	109.47
67	H26A	C26	H26B	109.47
68	H26A	C26	H26C	109.47
69	H26B	C26	H26C	109.47
70	C7	C24	H24A	109.47
71	C7	C24	H24B	109.47
72	C7	C24	H24C	109.47
73	H24A	C24	H24B	109.47
74	H24A	C24	H24C	109.47
75	H24B	C24	H24C	109.47

76	C16	C29	H29A	109.47
77	C16	C29	H29B	109.47
78	C16	C29	H29C	109.47
79	H29A	C29	H29B	109.47
80	H29A	C29	H29C	109.47
81	H29B	C29	H29C	109.47
82	С9	C25	H25A	109.47
83	C9	C25	H25B	109.47
84	С9	C25	H25C	109.47
85	H25A	C25	H25B	109.47
86	H25A	C25	H25C	109.47
87	H25B	C25	H25C	109.47
88	C4	C3	C1	121.55
89	C4	C3	C2	123.83
90	C1	C3	C2	114.49
91	C12	C27	H27A	109.47
92	C12	C27	H27B	109.47
93	C12	C27	H27C	109.47
94	H27A	C27	H27B	109.47
95	H27A	C27	H27C	109.47
96	H27B	C27	H27C	109.47
97	C13	C14	C15	116.87
98	C13	C14	C28	121.67
99	C15	C14	C28	121.46
100	C18	C30	H30A	109.47
101	C18	C30	H30B	109.47
102	C18	C30	H30C	109.47
103	H30A	C30	H30B	109.47
104	H30A	C30	H30C	109.47
105	H30B	C30	H30C	109.47
106	C6	C23	H23A	109.47
107	C6	C23	H23B	109.47
108	C6	C23	H23C	109.47
109	H23A	C23	H23B	109.47
110	H23A	C23	H23C	109.47
111	H23B	C23	H23C	109.47
112	N1	C1	C3	177.64
113	C14	C28	H28A	109.47
114	C14	C28	H28B	109.47
115	C14	C28	H28C	109.47
116	H28A	C28	H28B	109.47
117	H28A	C28	H28C	109.47
118	H28B	C28	H28C	109.47
119	C20	C31	H31A	109.47

120	C20	C31	H31B	109.47
121	C20	C31	H31C	109.47
122	H31A	C31	H31B	109.47
123	H31A	C31	H31C	109.47
124	H31B	C31	H31C	109.47
125	N2	C2	C3	177.45

Coordinates of Optimised geometries

Coordinates of 1

С	-5.882337000	-0.355366000	0.016916000
С	-4.757730000	-1.028077000	-0.374248000
С	-3.348084000	-0.703871000	-0.248181000
С	-2.831648000	0.465931000	0.352117000
С	-2.431712000	-1.643167000	-0.771024000
С	-1.460065000	0.676139000	0.404074000
С	-1.062169000	-1.431186000	-0.687819000
С	-0.533695000	-0.260659000	-0.105508000
В	1.027766000	-0.012923000	-0.023123000
С	1.556236000	1.474527000	0.008575000
С	1.980821000	-1.273772000	0.000800000
С	2.423611000	1.916822000	1.047232000
С	1.170483000	2.419520000	-0.979662000
С	1.853903000	-2.290583000	0.981886000
С	2.973594000	-1.446839000	-1.008299000
С	2.848793000	3.246723000	1.086828000
С	2.887608000	0.995493000	2.158397000
С	1.646441000	3.734030000	-0.920232000
С	0.265171000	2.068672000	-2.147637000

С	2.676295000	-3.424724000	0.935453000
С	0.918309000	-2.176567000	2.169694000
С	3.760328000	-2.598726000	-1.026473000
С	3.188495000	-0.428233000	-2.110433000
С	2.480089000	4.174057000	0.108036000
Η	3.493856000	3.567552000	1.902836000
Η	3.464121000	0.149932000	1.770326000
Η	3.520433000	1.537295000	2.868218000
Η	2.046999000	0.578129000	2.725713000
Η	1.354941000	4.434195000	-1.701382000
Η	-0.790805000	2.236328000	-1.902930000
Η	0.500220000	2.695648000	-3.014355000
Η	0.356182000	1.025348000	-2.461130000
С	3.632063000	-3.604505000	-0.061050000
Η	2.564569000	-4.184933000	1.707084000
Η	1.474334000	-1.879057000	3.069033000
Η	0.123913000	-1.442608000	2.022884000
Η	0.445998000	-3.140047000	2.392891000
Η	4.497259000	-2.717297000	-1.819184000
Η	2.296047000	-0.304276000	-2.736540000
Н	3.438017000	0.559378000	-1.711110000
Н	4.003532000	-0.741316000	-2.770490000
С	2.994402000	5.593201000	0.147876000
С	4.507129000	-4.834528000	-0.104245000
Η	4.010334000	5.658421000	-0.264389000
Η	2.360226000	6.266319000	-0.438162000
Н	3.038733000	5.974734000	1.174001000

Η	5.568088000	-4.572902000	-0.003856000
Н	4.257484000	-5.531845000	0.701528000
Η	4.398969000	-5.368717000	-1.056381000
С	-7.168724000	-0.933939000	-0.246069000
С	-5.905204000	0.911181000	0.684310000
N	-8.209040000	-1.408229000	-0.462163000
N	-5.951302000	1.939862000	1.226773000
Η	-4.956226000	-1.976645000	-0.868411000
Η	-3.497671000	1.211103000	0.769325000
Η	-1.087284000	1.590663000	0.857137000
Η	-2.810933000	-2.549736000	-1.237024000
Н	-0.382192000	-2.181818000	-1.080165000

Coordinates of 2

В	1.218532000	-0.000091000	0.071402000
С	-0.364540000	-0.153280000	0.248498000
С	-1.127469000	-0.904982000	-0.677445000
С	-1.030771000	0.466225000	1.336754000
С	-2.524689000	-1.033086000	-0.539682000
С	-2.424437000	0.366835000	1.476336000
С	-3.173117000	-0.366821000	0.525579000
С	2.135771000	-1.290291000	0.016877000
С	3.135913000	-1.430812000	-0.989996000
С	1.987149000	-2.356414000	0.947707000
С	3.916632000	-2.588500000	-1.049881000
С	2.815176000	-3.481445000	0.870323000
С	3.784683000	-3.624439000	-0.122375000

Η	4.654828000	-2.681569000	-1.844627000
Η	2.693200000	-4.274433000	1.605879000
С	1.850344000	1.447821000	-0.045919000
С	1.302337000	2.436875000	-0.910780000
С	2.986835000	1.811218000	0.733686000
С	1.885806000	3.705625000	-0.988719000
С	3.515001000	3.102904000	0.648836000
С	2.990230000	4.065826000	-0.215560000
Η	1.457991000	4.437703000	-1.671230000
Η	4.367112000	3.362767000	1.274635000
С	0.108437000	2.174982000	-1.809691000
Η	0.230051000	1.270376000	-2.415523000
Η	-0.817133000	2.052842000	-1.238630000
Η	-0.037758000	3.010229000	-2.501669000
С	3.665115000	0.858427000	1.702832000
Η	4.249276000	0.093422000	1.180691000
Η	4.348576000	1.408314000	2.357994000
Η	2.956093000	0.324678000	2.344424000
С	3.610484000	5.437779000	-0.327267000
Η	4.416866000	5.448190000	-1.073111000
Η	2.873967000	6.187114000	-0.636158000
Η	4.046710000	5.760047000	0.624383000
С	3.392974000	-0.378641000	-2.054718000
Η	2.474884000	-0.024471000	-2.535436000
Η	3.889810000	0.505452000	-1.642393000
Η	4.036485000	-0.786343000	-2.840976000
С	0.975246000	-2.328492000	2.078081000

Η	1.031411000	-1.407382000	2.668244000
Η	-0.051978000	-2.407769000	1.708488000
Η	1.148036000	-3.164266000	2.763558000
С	4.674291000	-4.842766000	-0.182638000
Η	4.861274000	-5.152119000	-1.217000000
Н	5.652400000	-4.642482000	0.275162000
Η	4.231381000	-5.689911000	0.351153000
С	-4.630505000	-0.442132000	0.721005000
Η	-4.985047000	-0.764953000	1.698280000
С	-5.606842000	-0.109870000	-0.167117000
С	-6.990874000	-0.253929000	0.189100000
С	-5.338795000	0.436404000	-1.466631000
N	-8.109321000	-0.371452000	0.485968000
N	-5.138340000	0.888155000	-2.519360000
С	-0.271718000	1.230553000	2.403935000
Η	-0.527781000	0.869609000	3.407727000
Η	0.807611000	1.147117000	2.289229000
Η	-0.508532000	2.302468000	2.382884000
С	-0.480195000	-1.574485000	-1.875112000
Η	0.557634000	-1.274165000	-2.009008000
Η	-0.480461000	-2.668378000	-1.779650000
Η	-1.017798000	-1.335855000	-2.800098000
С	-3.273564000	-1.933328000	-1.499605000
Η	-4.271310000	-2.186800000	-1.138358000
Η	-3.390607000	-1.469693000	-2.486898000
Η	-2.733583000	-2.873942000	-1.649034000
С	-3.107954000	1.080677000	2.625640000

- Н -2.762440000 2.116849000 2.709686000
- Н -4.192991000 1.121371000 2.513393000
- Н -2.888935000 0.598893000 3.588404000

Reference:

1. M. S. Yuan, Z. Q. Liu, Q. Fang, J. Org. Chem., 2007, 72, 7915.