Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A Facile Exfoliation–Crystal Growth Route to Multicomponent Ag₂CO₃/Ag–Ti₅NbO₁₄ Nanohybrids with Improved Visible Light Photocatalytic Activity

Suhye Park, Jang Mee Lee, Yun Kyung Jo, In Young Kim, and Seong-Ju Hwang*

Department of Chemistry and Nano Sciences, College of Natural Sciences, Ewha Womans University, Seoul

120-750, Korea

Table	S1 .	Results	of	deconvolution	analysis	for	Ag	3d	XPS	spectra	of	the
Ag ₂ CO	3/Ag-	-Ti ₅ NbO ₁₄	₄ nan	ohybrids.								

	A	AT2				
Oxidation state	BE (eV)	Area (%)	BE (eV)	Area (%)		
Ag ⁰	368.20	27.6	368.18	33.3		
Ag^+	367.77	72.4	367.78	66.7		

: The Ag 3d XPS spectra of the present $Ag_2CO_3/Ag-Ti_5NbO_{14}$ nanohybrids can be commonly resolved into two components corresponding to monovalent Ag^+ cation and neutral Ag^0 element. **Table S1** summarizes the components of silver species. According to the peak convolution analysis, the observed XPS spectra of the present **AT** nanohybrids are well-reproduced with the summation of the spectra of Ag_2CO_3 and Ag metal, indicating the presence of these two phases. The ratio of Ag metal/ Ag_2CO_3 is determined to be 0.38 and 0.50 for the **AT1** and **AT2** nanohybrids, suggesting the increase of Ag metal upon the increase of Ag content. Fig. S1. Schematic model for the electronic structure of the $Ag_2CO_3/Ag-Ti_5NbO_{14}$ nanohybrids.

: As plotted in **Fig. S1**, taking into account the relative band positions of titanoniobate and silver carbonate, photoinduced holes in the valence band (VB) of Ag_2CO_3 can be transferred into the upper-lying VB of Ti_5NbO_{14} , leading to the spatial separation of electrons and holes and the increase of their lifetime. The presence of minor metallic silver phase is believed to promote the electron transfer between Ag_2CO_3 and Ti_5NbO_{14} .

Fig. S2. Three successive photocatalyst test for visible light ($\lambda > 420$ nm)-induced degradation of 4-CP molecule by the **AT2** nanohybrid (circle) and the unhybridized Ag₂CO₃ (square) for (a) the 1st cycle, (b) the 2nd cycle, and (c) the 3rd cycle.

: To probe the photostability of the present $Ag_2CO_3/Ag-Ti_5NbO_{14}$ nanohybrids, the photocatalytic performance of the **AT2** nanohybrid is repeatedly examined for consecutive three cycles. As illustrated in **Fig. S2**, the depression of photocatalytic activity for the degradation of 4-CP is much weaker for the **AT2** nanohybrid (~85% retention after the 3rd cycle) than for Ag_2CO_3 (~45% retention after the 3rd cycle), confirming the positive effect of hybridization on the photostability of silver carbonate.

Fig. S3. N₂ adsorption–desorption isotherms of the AT2 nanohybrid subjected to the photocatalyst test under the illumination of visible light ($\lambda > 420$ nm). The close and open symbols represent the adsorption and desorption data, respectively.

: As illustrated in **Fig. S3**, the surface area of the **AT2** nanohybrid subjected to the photocatalyst test is determined to be \sim 70 m²g⁻¹, which is quite similar to that of the asprepared **AT2** nanohybrid. This result clearly demonstrates the maintenance of the porous structure of the Ag₂CO₃/Ag–Ti₅NbO₁₄ nanohybrid.

Fig. S4. Ag 3d XPS spectra of the AT2 nanohybrid (a) before and (b) after the photocatalyst test under the illumination of visible light ($\lambda > 420$ nm).

: As plotted in **Fig. S4**, the photocatalyst test induces only a weak variation in Ag 3d XPS spectra of the **AT2** nanohybrid. This result clearly demonstrates the maintenance of the chemical nature of silver species (Ag₂CO₃ and Ag metal) in the Ag₂CO₃/Ag–Ti₅NbO₁₄ nanohybrid. The deconvolution analysis for the present XPS spectra demonstrates that the ratio of Ag⁰/Ag⁺ shows only a slight increase from 0.50 to 0.52 upon the photocatalyst test, underscoring the weak influence of photoreaction on the chemical bonding nature of silver species.