Density Functional Theory Investigations of the Trivalent Lanthanides and Actinides Extraction Complexes with Diglycolamides

Cong-Zhi Wang,^{*a*} Jian-Hui Lan,^{*a*} Qun-Yan Wu,^{*a*} Yu-Liang Zhao,^{*a*} Xiang-Ke Wang,^{*b*} Zhi-Fang Chai,*^{*a*,*c*} and Wei-Qun Shi*^{*a*}

^aNuclear Energy Nano-Chemistry Group, Key Laboratory of Nuclear Radiation and Nuclear Energy

Technology and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute

of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

*E-mail: shiwq@ihep.ac.cn;

^bKey Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

^cSchool of Radiological & Interdisciplinary Sciences, Soochow University, Suzhou 215123, China *E-mail: zfchai@suda.edu.cn

Supporting Information

Figure S1 Optimized structures of Am(III), Cm(III) and Eu(III) complexes by the BP86 method.

Figure S2 The two-dimensional (2D) color-filled map of ELF for the model complex AmL(NO₃)₃ **Table S1** Changes of the Gibbs free energy (kcal/mol) including zero-point energy (ZPE) corrections and thermal corrections for complexing reactions concerning Am³⁺, Cm³⁺ and Eu³⁺ in the gas phase and aqueous solution by the BP86 method.

Table S2 Calculated C=O stretching vibrational frequencies (cm⁻¹) for the Am³⁺, Cm³⁺ and Eu³⁺ complexes with L (L= TODGA, DMDHOPDA) and the free ligands by the B3LYP method

Table S3 The Wiberg bond indices (WBIs) of M-O bonds for complexes of Am³⁺, Cm³⁺, Eu³⁺ and L by the B3LYP method

Table S4 The charge transfer of the metal atoms (ΔQ) and NPA charges (Q) on the O atoms in complexes of Am³⁺, Cm³⁺, Eu³⁺ and L by the B3LYP method

Table S5 The average WBIs of M-O bonds, the charge transfer of the metal atoms and natural charges on the O atoms for the complexes of Am^{3+} , Eu^{3+} and L (2:1 type) by the B3LYP method

Table S6 Calculated reaction energies (kcal/mol) including zero-point energy (ZPE) corrections and thermal corrections for the Am³⁺, Cm³⁺ and Eu³⁺ complexes with L by the B3LYP method

 Table S7 Calculated reaction energies (kcal/mol) including the correction for entropy of water for

 ML(NO₃)₃ with L in aqueous solution by the B3LYP method

Complete Gaussian 09 reference (Reference 19)

Figure S1. Optimized structures of Am(III), Cm(III) and Eu(III) complexes by the BP86 method. White, red, blue and pink spheres represent H, O, N, M (M=Am, Cm and Eu), respectively.

Figure S2. The two-dimensional (2D) color-filled map of ELF for AmL(NO₃)₃.^[1-4]

Table S1 Changes of the Gibbs free energy (kcal/mol) including zero-point energy (ZPE) corrections and thermal corrections for complexing reactions concerning Am³⁺, Cm³⁺ and Eu³⁺ in the gas phase and aqueous solution by the BP86 method.

Reactions	ΔG_g	ΔG_{sol}
$[Am(H_2O)_8]^{3+} + H_2O \rightarrow [Am(H_2O)_9]^{3+}$	-13.3	1.8
$[Cm(H_2O)_8]^{3+} + H_2O \rightarrow [Cm(H_2O)_9]^{3+}$	-14.1	0.3
$[Eu(H_2O)_8]^{3+} + H_2O \rightarrow [Eu(H_2O)_9]^{3+}$	-13.4	-2.4
$[Am(H_2O)_9]^{3+} + NO_3^- \rightarrow [Am(NO_3)(H_2O)_7]^{2+} + 2H_2O$	-256.8	-38.6
$[Cm(H_2O)_9]^{3+} + NO_3^- \rightarrow [Cm(NO_3)(H_2O)_7]^{2+} + 2H_2O$	-253.5	-35.9
$[Eu(H_2O)_9]^{3+} + NO_3^- \rightarrow [Eu(NO_3)(H_2O)_7]^{2+} + 2H_2O$	-264.0	-42.2
$[Am(H_2O)_9]^{3+} + 2NO_3^- \rightarrow [Am(NO_3)_2(H_2O)_5]^+ + 4H_2O$	-444.1	-76.9
$[Cm(H_2O)_9]^{3+} + 2NO_3^- \rightarrow [Cm(NO_3)_2(H_2O)_5]^+ + 4H_2O$	-437.9	-73.2
$[Eu(H_2O)_9]^{3+} + 2NO_3^- \rightarrow [Eu(NO_3)_2(H_2O)_5]^+ + 4H_2O$	-449.3	-80.0
$[\operatorname{Am}(\operatorname{H}_2\operatorname{O})_9]^{3+} + 3\operatorname{NO}_3^- \to \operatorname{Am}(\operatorname{NO}_3)_3(\operatorname{H}_2\operatorname{O})_3 + 5\operatorname{H}_2\operatorname{O}$	-554.0	-107.1
$[Cm(H_2O)_9]^{3+} + 3NO_3^- \rightarrow Cm(NO_3)_3(H_2O)_3 + 5H_2O$	-549.8	-102.2
$[\operatorname{Eu}(\operatorname{H_2O})_9]^{3+} + 3\operatorname{NO}_3^- \to \operatorname{Eu}(\operatorname{NO}_3)_3(\operatorname{H_2O})_3 + 5\operatorname{H_2O}$	-558.2	-108.9

Table S2 Calculated C=O stretching vibrational frequencies (cm⁻¹) for the Am³⁺, Cm³⁺ and Eu³⁺ complexes with L (L= TODGA, DMDHOPDA) and the free ligands by the B3LYP method

No.	Species	C=0			
		TODGA	DMDHOPDA		
	L	1741.8, 1761.1	1752.5, 1774.3		
1	[AmL] ³⁺	1473.1, 1481.8	1462.0, 1472.9		
2	[CmL] ³⁺	1413.6, 1420.1	1401.8, 1413.7		
3	[EuL] ³⁺	1484.9, 1499.0	1472.1, 1493.2		
4	$[AmL(H_2O)_6]^{3+}$	1682.0, 1691.6	1688.6, 1698.8		
5	$[CmL(H_2O)_6]^{3+}$	1682.8, 1692.8	1690.1, 1700.2		
6	[EuL(H ₂ O) ₆] ³⁺	1677.0, 1681.9	1680.4, 1685.2		
7	$[AmL(NO_3)(H_2O)_4]^{2+}$	1672.1, 1699.2	1696.4, 1707.8		
8	$[CmL(NO_3)(H_2O)_4]^{2+}$	1670.7, 1675.8	1689.3, 1705.3		
9	$[EuL(NO_3)(H_2O)_4]^{2+}$	1680.6, 1698.2	1694.5, 1705.0		
10	$[AmL(NO_3)_2(H_2O)_2]^+$	1681.4, 1703.2	1690.8, 1710.7		
11	$[CmL(NO_3)_2(H_2O)_2]^+$	1680.5, 1702.6	1691.0, 1710.4		

12	$[EuL(NO_3)_2(H_2O)_2]^+$	1688.3, 1709.0	1696.3, 1714.1
13	AmL(NO ₃) ₃	1684.6, 1706.0	1694.8, 1712.9
14	CmL(NO ₃) ₃	1687.0, 1706.7	1697.4, 1716.8
15	EuL(NO ₃) ₃	1697.6, 1716.6	1699.1, 1716.5
16	$[AmL_2]^{3+}$	1678.0, 1680.0, 1680.2, 1704.8	1688.4, 1690.6, 1691.1, 1712.8
17	$[CmL_2]^{3+}$	1680.2, 1682.0, 1682.1, 1705.8	1689.6, 1691.2, 1691.3, 1713.2
18	$[EuL_2]^{3+}$	1668.5, 1671.3, 1674.5, 1676.3	1680.2, 1683.3, 1684.6, 1684.8
19	$AmL_2(NO_3)_3$	1687.0, 1693.5, 1721.7, 1740.8	1692.0, 1700.7, 1711.8, 1735.2
20	$CmL_2(NO_3)_3$	1685.8, 1692.2, 1719.8, 1740.0	1692.5, 1705.0, 1712.2, 1736.4
21	$EuL_2(NO_3)_3$	1691.7, 1698.5, 1724.4, 1742.3	1694.0, 1695.7, 1707.2, 1731.8

Table S3 The Wiberg bond indices (WBIs) of M-O bonds for complexes of Am³⁺, Cm³⁺, Eu³⁺ and L

by the B3LYP method ^{<i>a</i>}

No.	Species	M-O	M-O ^b	M-O ^b	M-O ^b
		(ether)	(carbonyl)	(H ₂ O)	(NO ₃ -)
1	[AmL] ³⁺	0.106/0.117	0.217/0.225		
2	[CmL] ³⁺	0.175/0.183	0.355/0.359		
3	[EuL] ³⁺	0.100/0.100	0.189/0.182		
4	$[AmL(H_2O)_6]^{3+}$	0.230/0.222	0.371/0.365	0.266/0.267	
5	$[CmL(H_2O)_6]^{3+}$	0.218/0.216	0.352/0.346	0.262/0.264	
6	$[EuL(H_2O)_6]^{3+}$	0.198/0.208	0.313/0.323	0.238/0.247	
7	$[AmL(NO_3)(H_2O)_4]^{2+}$	0.225/0.213	0.342/0.333	0.257/0.266	0.339/0.339
8	$[CmL(NO_3)(H_2O)_4]^{2+}$	0.200/0.199	0.328/0.329	0.253/0.264	0.317/0.308
9	$[EuL(NO_3)(H_2O)_4]^{2+}$	0.218/0.216	0.354/0.340	0.260/0.268	0.354/0.365
10	$[AmL(NO_3)_2(H_2O)_2]^+$	0.195/0.193	0.310/0.308	0.269/0.267	0.324/0.327
11	$[CmL(NO_3)_2(H_2O)_2]^+$	0.187/0.188	0.312/0.308	0.264/0.265	0.300/0.302
12	$[EuL(NO_3)_2(H_2O)_2]^+$	0.206/0.199	0.318/0.313	0.273/0.268	0.332/0.330
13	AmL(NO ₃) ₃	0.167/0.159	0.282/0.279		0.305/0.307
14	CmL(NO ₃) ₃	0.168/0.161	0.273/0.270		0.287/0.290
15	EuL(NO ₃) ₃	0.178/0.173	0.285/0.288		0.309/0.314

^{*a*}.../... refers to the results for TODGA and DMDHOPDA complexes, respectively. ^{*b*}M-O denotes average WBIs.

Ne	Species	ΔQ	Q		
INO.	Species	М	O(ether)	O(carbonyl) ^b	
1	[AmL] ³⁺	1.234/1.156	-0.640/-0.648	-0.826/-0.825	
2	[CmL] ³⁺	1.020/0.889	-0.652/-0.660	-0.842/-0.845	
3	[EuL] ³⁺	1.278/1.270	-0.637/-0.640	-0.817/-0.809	
4	$[AmL(H_2O)_6]^{3+}$	1.443/1.431	-0.567-0.566	-0.734/-0.727	
5	[CmL(H ₂ O) ₆] ³⁺	1.415/1.410	-0.568/-0.567	-0.740/-0.732	
6	$[EuL(H_2O)_6]^{3+}$	1.633/1.597	-0.555/-0.557	-0.713/-0.708	
7	$[AmL(NO_3)(H_2O)_4]^{2+}$	1.499/1.502	-0.558/-0.554	-0.705/-0.702	
8	$[CmL(NO_3)(H_2O)_4]^{2+}$	1.455/1.466	-0.559/-0.557	-0.719/-0.706	
9	[EuL(NO ₃)(H ₂ O) ₄] ²⁺	1.554/1.572	-0.552/-0.548	-0.700/-0.697	
10	$[AmL(NO_3)_2(H_2O)_2]^+$	1.540/1.540	-0.543/-0.542	-0.664/-0.659	
11	$[CmL(NO_3)_2(H_2O)_2]^+$	1.497/1.497	-0.544/-0.543	-0.669/-0.664	
12	$[EuL(NO_3)_2(H_2O)_2]^+$	1.599/1.590	-0.540/-0.537	-0.651/-0.653	
13	AmL(NO ₃) ₃	1.511/1.513	-0.547/-0.544	-0.645/-0.640	
14	CmL(NO ₃) ₃	1.462/1.466	-0.548/-0.544	-0.648/-0.640	
15	EuL(NO ₃) ₃	1.548/1.577	-0.538/-0.539	-0.629/-0.630	

Table S4 The charge transfer of the metal atoms (ΔQ) and NPA charges (Q) on the O atoms in complexes of Am³⁺, Cm³⁺, Eu³⁺ and L by the B3LYP method^{*a*}

^{*a*}.../... refers to the results for TODGA and DMDHOPDA complexes, respectively. ^{*b*}average NPA charges.

		WBI		ΔQ	Q		
No.	Species	M-O	M-O	М	$O(\text{ether})^b$	$O(arbonyl)^b$	$O(NO,-)^b$
		(ether)	(carbonyl)	IVI	O(ether)*	O(Carbonyi)*	0(1103)
16	$[AmL_2]^{3+}$	0.192/0.208	0.367/0.362	1.070/1.074	-0.595/-0.596	-0.758/-0.751	—
17	$[CmL_2]^{3+}$	0.190/0.189	0.354/0.351	1.054/1.045	-0.598/-0.597	-0.760/-0.758	_
18	$[EuL_2]^{3+}$	0.188/0.193	0.333/0.336	1.215/1.202	-0.591/-0.591	-0.742/-0.740	—
19	$AmL_2(NO_3)_3$	—	0.281/0.288	1.692/1.635		-0.624/-0.627	-0.493/-0.516
20	$CmL_2(NO_3)_3$		0.281/0.290	1.635/1.597		-0.630/-0.633	-0.501/-0.523
21	$EuL_2(NO_3)_3$	_	0.293/0.312	1.764/1.711	_	-0.615/-0.622	-0.482/-0.507

Table S5 The average WBIs of M-O bonds, the charge transfer of the metal atoms and natural charges on the O atoms for the complexes of Am^{3+} , Eu^{3+} and L (2:1 type) by the B3LYP method^{*a*}

^{*a*}.../... refers to the results for TODGA and DMDHOPDA complexes, respectively. ^{*b*}average NPA charges.

Table S6 Calculated reaction energies (kcal/mol) including ZPE corrections and thermal corrections for the Am^{3+} , Cm^{3+} and Eu^{3+} complexes with L by the B3LYP method^{*a*}

No.	Reactions	ΔG_{g}	ΔG_{sol}
1	$[Am(H_2O)_9]^{3+} + L \rightarrow [AmL]^{3+} + 9H_2O$	28.7/44.7	40.5/40.5
2	$[Cm(H_2O)_9]^{3+} + L \rightarrow [CmL]^{3+} + 9H_2O$	62.9/76.4	42.2/41.1
3	$[\mathrm{Eu}(\mathrm{H_2O})_9]^{3+} + \mathrm{L} \rightarrow [\mathrm{Eu}\mathrm{L}]^{3+} + 9\mathrm{H_2O}$	-7.3/9.3	37.0/41.2
4	$[Am(H_2O)_9]^{3+} + L \rightarrow [AmL(H_2O)_6]^{3+} + 3H_2O$	-74.9/-69.5	-6.2/-11.3
5	$[Cm(H_2O)_9]^{3+} + L \rightarrow [CmL(H_2O)_6]^{3+} + 3H_2O$	-74.7/-68.9	-7.0/-9.6
6	$[\mathrm{Eu}(\mathrm{H_2O})_9]^{3+} + \mathrm{L} \rightarrow [\mathrm{Eu}\mathrm{L}(\mathrm{H_2O})_6]^{3+} + 3\mathrm{H_2O}$	-91.5/-84.7	-7.8/-13.1
7	$[\operatorname{Am}(\operatorname{H_2O})_9]^{3+} + L + \operatorname{NO}_3^- \rightarrow [\operatorname{Am}L(\operatorname{NO}_3)(\operatorname{H_2O})_4]^{2+} + 5\operatorname{H_2O}$	-290.5/-290.3	-20.8/-24.8
8	$[Cm(H_2O)_9]^{3+} + L + NO_3^- \rightarrow [CmL(NO_3)(H_2O)_4]^{2+} + 5H_2O$	-288.3/-292.6	-17.4/-24.5
9	$[\operatorname{Eu}(\operatorname{H}_2\operatorname{O})_9]^{3+} + L + \operatorname{NO}_3^- \rightarrow [\operatorname{Eu}L(\operatorname{NO}_3)(\operatorname{H}_2\operatorname{O})_4]^{2+} + 5\operatorname{H}_2\operatorname{O}$	-296.8/-293.3	-19.4/-26.8
10	$[Am(H_2O)_9]^{3+} + L + 2NO_3^- \rightarrow [AmL(NO_3)_2(H_2O)_2]^+ + 7H_2O$	-446.1/-451.0	-36.1/-40.9
11	$[Cm(H_2O)_9]^{3+} + L + 2NO_3^- \rightarrow [CmL(NO_3)_2(H_2O)_2]^+ + 7H_2O$	-445.2/-450.3	-32.7/-38.1
12	$[\operatorname{Eu}(\operatorname{H_2O})_9]^{3+} + L + 2\operatorname{NO}_3^{-} \rightarrow [\operatorname{Eu}L(\operatorname{NO}_3)_2(\operatorname{H_2O})_2]^+ + 7\operatorname{H_2O}$	-451.2/-455.7	-36.0/-40.2
13	$[Am(H_2O)_9]^{3+} + L + 3NO_3^- \rightarrow AmL(NO_3)_3 + 9H_2O$	-532.2/-538.1	-37.4/-43.8
14	$[Cm(H_2O)_9]^{3+} + L + 3NO_3 \rightarrow CmL(NO_3)_3 + 9H_2O$	-529.4/-535.7	-32.8/-39.7
15	$[\mathrm{Eu}(\mathrm{H}_{2}\mathrm{O})_{9}]^{3+} + \mathrm{L} + 3\mathrm{NO}_{3^{-}} \rightarrow \mathrm{EuL}(\mathrm{NO}_{3})_{3} + 9\mathrm{H}_{2}\mathrm{O}$	-532.9/-542.1	-36.8/-42.4
16	$[\mathrm{Am}(\mathrm{H}_2\mathrm{O})_9]^{3+} + 2\mathrm{L} \rightarrow [\mathrm{Am}\mathrm{L}_2]^{3+} + 9\mathrm{H}_2\mathrm{O}$	-91.8/-86.7	-1.3/-7.1

17	$[Cm(H_2O)_9]^{3+} + 2L \rightarrow [CmL_2]^{3+} + 9H_2O$	-90.1/-86.2	-0.2/-10.3
18	$[Eu(H_2O)_9]^{3+} + 2L \rightarrow [EuL_2]^{3+} + 9H_2O$	-104.4/-100.9	-12.1/-22.7
19	$[\operatorname{Am}(\operatorname{H}_2\operatorname{O})_9]^{3+} + 2L + 3\operatorname{NO}_3^- \to \operatorname{Am}L_2(\operatorname{NO}_3)_3 + 9\operatorname{H}_2\operatorname{O}$	-510.0/-523.9	1.2/-14.3
20	$[Cm(H_2O)_9]^{3+} + 2L + 3NO_3^- \rightarrow CmL_2(NO_3)_3 + 9H_2O$	-507.0/-525.2	6.2/-16.1
21	$[\mathrm{Eu}(\mathrm{H}_2\mathrm{O})_9]^{3+} + 2\mathrm{L} + 3\mathrm{NO}_3^{-} \rightarrow \mathrm{Eu}\mathrm{L}_2(\mathrm{NO}_3)_3 + 9\mathrm{H}_2\mathrm{O}$	-511.9/-528.3	7.2/-17.0

^{*a*} .../... refers to the results for TODGA and DMDHOPDA complexes, respectively.

Table S7 Calculated reaction energies (kcal/mol) including the correction for entropy of water for ML(NO₃)₃ with L in aqueous solution by the B3LYP method^{*a*}

Reactions	ΔG_{corr}
$[\operatorname{Am}(\operatorname{H}_2\operatorname{O})_9]^{3+} + L + 3\operatorname{NO}_3^- \to \operatorname{AmL}(\operatorname{NO}_3)_3 + 9\operatorname{H}_2\operatorname{O}$	1.3/-5.1
$[Cm(H_2O)_9]^{3+} + L + 3NO_3^- \rightarrow CmL(NO_3)_3 + 9H_2O$	5.9/-1.0
$[\operatorname{Eu}(\operatorname{H}_2\operatorname{O})_9]^{3+} + L + 3\operatorname{NO}_3^- \to \operatorname{EuL}(\operatorname{NO}_3)_3 + 9\operatorname{H}_2\operatorname{O}$	1.9/-3.7
$[\operatorname{Am}(\operatorname{NO}_3)(\operatorname{H}_2\operatorname{O})_7]^{2+} + L + 2\operatorname{NO}_3^- \to \operatorname{AmL}(\operatorname{NO}_3)_3 + 7\operatorname{H}_2\operatorname{O}$	1.3/-5.0
$[Cm(NO_3)(H_2O)_7]^{2+} + L + 2NO_3^- \rightarrow CmL(NO_3)_3 + 7H_2O$	11.8/4.9
$[\operatorname{Eu}(\operatorname{NO}_3)(\operatorname{H}_2\operatorname{O})_7]^{2+} + L + 2\operatorname{NO}_3^- \to \operatorname{EuL}(\operatorname{NO}_3)_3 + 7\operatorname{H}_2\operatorname{O}$	11.7/6.0
$[\operatorname{Am}(\operatorname{NO}_3)_2(\operatorname{H}_2\operatorname{O})_5]^+ + L + \operatorname{NO}_3^- \to \operatorname{AmL}(\operatorname{NO}_3)_3 + 5\operatorname{H}_2\operatorname{O}$	17.0/10.6
$[Cm(NO_3)_2(H_2O)_5]^+ + L + NO_3^- \rightarrow CmL(NO_3)_3 + 5H_2O$	18.2/11.3
$[Eu(NO_3)_2(H_2O)_5]^+ + L + NO_3^- \rightarrow EuL(NO_3)_3 + 5H_2O$	17.2/11.6
$Am(NO_3)_3(H_2O)_3 + L \rightarrow AmL(NO_3)_3 + 3H_2O$	17.4/11.1
$Cm(NO_3)_3(H_2O)_3 + L \rightarrow CmL(NO_3)_3 + 3H_2O$	17.9/11.0
$Eu(NO_3)_3(H_2O)_3 + L \rightarrow EuL(NO_3)_3 + 3H_2O$	17.3/11.7

^a.../... refers to the results for TODGA and DMDHOPDA complexes.

References

- 1. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
- 2. A. Savin, O. Jepsen and J. Flad, Angew. Chem., Int. Ed. Engl., 1992, 31, 187.
- 3. E. D. Santo, M. C. Michelini and N. Russo, Organometallics, 2009, 28, 3716.
- 4. L. Petit, L. Joubert and P. Maldivi, J. Am. Chem. Soc., 2006, 128, 2190.

Complete Gaussian 09 reference (Reference 19)

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09 Revision A.02*, Gaussian, Inc., Wallingford CT, 2009.