Supporting Information

Effect of *f-f* Interactions on the Quantum Tunnelling of the Magnetization: Mono- and Dinuclear Dy(III) Phthalocyaninato Triple-Decker Single-Molecule Magnets with the Same Octacoordination Environment

Keiichi Katoh,* Rina Asano, Akira Miura, Yoji Horii, Takaumi Morita, Brian K. Breedlove, and Masahiro Yamashita*

Table of Contents

- 1. Spectroscopic data for 1: Figure S1.
- 2. Crystal structure of 1: Figure S2.
- Schematic illustration (distance and angles) of the square-antiprismatic coordination site in the multiple-decker Dy(III)-Pc systems: Figure S3-1–4.
- 4. Temperature (*T*) dependence of $\chi_{\rm M}T$ and $\chi_{\rm M}^{-1}$ for powder samples of **1** at 1000 Oe: Figure S3.
- 5. The ac measurements (χ_{M} ' versus ν plots) of 1 and 2 in a zero dc field: Figure S4.
- 6. Alternating current (ac) magnetic susceptibility measurements of 1 and 2: Figure S5.
- 7. Arrhenius plots made by using parameters obtained from the $\chi_{\rm M}$ " versus ν plots plots of 1 and 2: Figure S6.
- 8. Selected Argand plots (χ_M " versus χ_M ' plots) in a zero dc field for 1 and 2: Figure S7, Table S1 and S2.
- 9. The ac measurements (χ_M ' versus ν plots) of **1** and **2** in a dc field of 1000 Oe: Figure S8 and S9.
- 10. An Arrhenius plots of 1 and 2 at 1000 Oe: Figure S10.
- 11. Extended Debye model.

Figure S1. a) Electronic spectra of 1 in CHCl₃ ($\sim 10^{-5}$ M) at 298 K. b) FT-IR spectra of 1 as KBr pellets at 298 K.

Figure S2. Packing diagram of 1. EtOH located between the *n*-butoxy chains were omitted for clarity.

Figure S3-1. Schematic illustration (distance and angles) of the square-antiprismatic coordination site in the multiple-decker Dy(III)-Pc systems: $DyY(obPc)_3$ (1).

Dy₂(obPc)₃

Figure S3-2. Schematic illustration (distance and angles) of the square-antiprismatic coordination site in the multiple-decker Dy(III)-Pc systems: $Dy_2(obPc)_3$ (**2**).

Dy(obPc)₂

Figure S3-3. Schematic illustration (distance and angles) of the square-antiprismatic coordination site in the multiple-decker Dy(III)-Pc systems: Dy(obPc)₂.

DyPc₂

Figure S3-4. Schematic illustration (distance and angles) of the square-antiprismatic coordination site in the multiple-decker Dy(III)-Pc systems: DyPc₂.

Figure S4. Temperature (*T*) dependence of $\chi_M T$ and χ_M^{-1} for powder samples of **1** in a field of 1000 Oe. In the χ_M^{-1} versus *T* plot, the black solid line represents a linear fit of all data.

Figure S5. a) Frequency (ν) and temperature (*T*) dependences of the ac magnetic susceptibility inphase (χ_M') and out-of-phase (χ_M'') of a) **1** and b) **2** at zero dc field.

Figure S6. Temperature (*T*) and frequency (*v*) dependent of the ac measurements (χ_M' versus *v* plots) of **1** and **2** in a zero dc field.

Figure S7. Selected Argand plots (χ_M " versus χ_M ' plots) in a zero dc field for a) **1** and b) **2**. Solid lines (red and blue) were fitted by using a generalized Debye model (eq. 4).

<i>T /</i> K	Xs	$\chi_{ m T}$	α	au / s
1.9	1.82	3.89	0.41	3.20×10 ⁻⁵
2.0	1.66	3.67	0.42	3.10×10 ⁻⁵
2.3	1.59	3.19	0.39	3.11×10 ⁻⁵
2.7	1.09	2.72	0.41	3.42×10 ⁻⁵
3.0	1.36	2.45	0.33	2.96×10 ⁻⁵
3.5	1.39	2.11	0.29	3.42×10 ⁻⁵
4.0	1.39	1.84	0.20	3.49×10 ⁻⁵

Table S1. These parameters in 1 were obtained from fittings using a generalized Debye model

Table S2. These parameters in **2** were obtained from fittings using a generalized Debye model

<i>T /</i> K	χs	$\chi_{ m T}$	α	au / s
1.82	10.60	15.70	0.20	1.30×10 ⁻⁴
2.0	8.51	13.70	0.24	1.30×10 ⁻⁴
2.2	7.90	12.30	0.23	1.29×10 ⁻⁴
2.6	6.72	9.94	0.22	1.26×10 ⁻⁴
2.8	6.29	9.07	0.21	1.25×10^{-4}
3.0	5.92	8.35	0.20	1.24×10 ⁻⁴
3.4	4.78	7.22	0.29	1.14×10 ⁻⁴
3.6	7.98	6.74	0.19	1.11×10 ⁻⁴
3.8	4.67	6.33	0.21	1.11×10 ⁻⁴
4.0	4.48	5.97	0.20	1.13×10 ⁻⁴
4.2	4.50	5.64	0.15	1.06×10^{-4}

Figure S8. Temperature (*T*) and frequency (*v*) dependences of the ac susceptibilities of **1** in a dc field of 1000 Oe. a) χ_{M}'' versus *v* plots, b) χ_{M}'' versus *v* plots, and c) Argand plot. Black solid lines were fitted by using an extended Debye model. d) Arrhenius plot for **1** in a dc field of 1000 Oe. The solid lines were fitted using least-square analysis on the data in the high-*T* region using the equation $\tau = \tau_0 \exp(\Delta/k_BT)$ with the kinetic parameters ($\Delta/hc = 18$ cm, $\tau_0 = 3.1 \times 10^{-6}$ s).

Figure S9. Temperature (*T*) and frequency (*v*) dependences of the ac magnetic susceptibilities of **2** in an H_{dc} of 1000 Oe. a) χ_{M}' versus *v* plots, b) χ_{M}'' versus *v* plots, and c) Argand plot. Black solid lines were fitted by using an extended Debye model. d) Arrhenius plot for **2** in an H_{dc} of 1000 Oe. The solid lines were fitted by using least-square analysis on the data in the high *T* region with the equation $\tau = \tau_0 \exp(\Delta/k_{\rm B}T)$, and the kinetic parameters ($\Delta/hc = 35$ cm, $\tau_0 = 1.3 \times 10^{-5}$ s).

Figure S10. Arrhenius plots made by using parameters obtained from the χ_M " versus ν plots (Figures 10b and 11b) for a) **1** and b) **2** in a dc magnetic field of 1000 Oe. Red circles indicate the residual quantum regime, which have a large margin of error. Therefore, these data cannot be used for discussions (see main text).

Extended Debye Model: In order to understand the different relaxation mechanisms corresponding to the two observed peaks, an extended Debye model (eq. 5) was used to fit τ_1 and τ_2 :

$$\chi_{total}(\omega) = \chi_{s} + (\chi_{T} - \chi_{S}) \left[\frac{\beta}{1 + (i\omega\tau_{1})^{1 - \alpha_{1}}} + \frac{1 - \beta}{1 + (i\omega\tau_{2})^{1 - \alpha_{2}}} \right]$$
(5)

where χ_s is the adiabatic susceptibility, χ_T is the isothermal susceptibility, $\omega (= 2\pi f)$ is the angular frequency, τ_1 and τ_2 are the magnetization relaxation times, τ_1 and τ_2 describe the distributions of the relaxation processes, β is the weight of the first relaxation process, and $(1-\beta)$ corresponds to the second one. The real part and the imaginary part are given by eqs. 6 and 7, respectively.

$$\chi' = \chi_{S} + (\chi_{T} - \chi_{S}) \left\{ \frac{\beta \left[1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin^{1}/_{2}\alpha_{1}\pi \right]}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin^{1}/_{2}\alpha_{1}\pi + (\omega\tau_{1})^{2(1-\alpha_{1})}} + \frac{(1-\beta) \left[1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin^{1}/_{2}\alpha_{2}\pi \right]}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin^{1}/_{2}\alpha_{2}\pi + (\omega\tau_{2})^{2(1-\alpha_{2})}} \right\}$$

$$(6)$$

$$\chi'' = (\chi_T - \chi_S) \left\{ \frac{\beta(\omega\tau_1)^{1-\alpha_1} \cos^1/2\alpha_1 \pi}{1 + 2(\omega\tau_1)^{1-\alpha_1} \sin^1/2\alpha_1 \pi + (\omega\tau_1)^{2(1-\alpha_1)}} + \frac{(1-\beta)(\omega\tau_2)^{1-\alpha_2} \cos^1/2\alpha_2 \pi}{1 + 2(\omega\tau_2)^{1-\alpha_2} \sin^1/2\alpha_2 \pi + (\omega\tau_2)^{2(1-\alpha_2)}} \right\}$$
(7)

To elucidate the details of the H_{dc} dependence of 1, the ν dependence of χ_{M}' and χ_{M}'' signals in the range of 1–1488 Hz were measured in an H_{dc} of 1000 Oe (Figures S6a–c). Below 6 K, however, the behavior deviated from that for a single relaxation process. Thus, we concluded that the relaxation process was a mixture of QTM processes in the low-T region. It is possible to suppress QTM by applying an H_{dc} , but it cannot be completely suppressed. Therefore, in order to separate the two relaxation processes, we analysed the data by using an extended Debye model (eq. 5–7) to extract τ (Figure S8a–c). One of the two τ values has a large margin of error. This is a QTM component, which is not completely suppressed by applying an H_{dc} . Δ/hc was estimated to be 18 cm⁻¹ with $\tau_0 = 3.1 \times 10^{-6}$ s from an Arrhenius plot for 1 in the T range of 2–6 K in an $H_{\rm dc}$ of 1000 Oe (Figure S8d). The values of Δ/hc and τ_0 are on the same order of magnitude as those for the Dy(III)-Pc double-decker complexes. These results confirm that the QTM process is suppressed by applying an H_{dc} , indicating a thermal relaxation process. These phenomena have been observed for 2 in an H_{dc} of 1000 Oe (Figures S9a-c). Δ/hc was estimated to be 35 cm⁻¹ with $\tau_0 = 1.3 \times 10^{-9}$ s from the Arrhenius plot in Figures S9d and S8b. However, these results confirm that the QTM process is not completely suppressed by applying an H_{dc} of 1000 Oe, indicating that a QTM process occurs for T < 3 K.