Electronic Supplementary Material (ESI) for Dalton Transactions.
This journal is © The Royal Society of Chemistry 2014

Supporting Information

Effect of f-f Interactions on the Quantum Tunnelling of the

Magnetization: Mono- and Dinuclear Dy(III) Phthalocyaninato Triple-

Decker Single-Molecule Magnets with the Same Octacoordination

Environment

Keiichi Katoh,* Rina Asano, Akira Miura, Yoji Horii, Takaumi Morita, Brian K. Breedlove, and

Masahiro Yamashita*

Table of Contents

[

9.

Spectroscopic data for 1: Figure S1.

Crystal structure of 1: Figure S2.

Schematic illustration (distance and angles) of the square-antiprismatic coordination site in the
multiple-decker Dy(III)-Pc systems: Figure S3-1—4.

Temperature (7) dependence of yT and yv! for powder samples of 1 at 1000 Oe: Figure S3.
The ac measurements (yy;' versus vplots) of 1 and 2 in a zero dc field: Figure S4.

Alternating current (ac) magnetic susceptibility measurements of 1 and 2: Figure SS5.

Arrhenius plots made by using parameters obtained from the y\” versus v plots plots of 1 and 2:
Figure S6.

Selected Argand plots (ym"” versus yu' plots) in a zero dc field for 1 and 2: Figure S7, Table S1
and S2.

The ac measurements (yy;' versus vplots) of 1 and 2 in a dc field of 1000 Oe: Figure S8 and S9.

10. An Arrhenius plots of 1 and 2 at 1000 Oe: Figure S10.

11. Extended Debye model.

S1



a) 2 T T T T
15| _
Q
(&)
[
° 1
8 _
[
(o]
a
© 05 -
0t L I 1 %IL T~
500 1000 1500 2000
wavelength / nm
b) -
2
g
50

4000 3500 3000 2500 2000 1500 1000 500
wavenumber/ cm™

Figure S1. a) Electronic spectra of 1 in CHCl; (~107 M) at 298 K. b) FT-IR spectra of 1 as KBr
pellets at 298 K.

Figure S2. Packing diagram of 1. EtOH located between the n-butoxy chains were omitted for

clarity.
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Figure S3-1. Schematic illustration (distance and angles) of the square-antiprismatic coordination

site in the multiple-decker Dy(I1I)-Pc systems: DyY (obPc); (1).
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Figure S3-2. Schematic illustration (distance and angles) of the square-antiprismatic coordination

site in the multiple-decker Dy(I1I)-Pc systems: Dy,(obPc); (2).
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Figure S3-3. Schematic illustration (distance and angles) of the square-antiprismatic coordination

site in the multiple-decker Dy(III)-Pc systems: Dy(obPc),.
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Figure S3-4. Schematic illustration (distance and angles) of the square-antiprismatic coordination

site in the multiple-decker Dy(I1I)-Pc systems: DyPc,.
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Figure S4. Temperature (7) dependence of T and yy! for powder samples of 1 in a field of 1000
Oe. In the y\! versus T plot, the black solid line represents a linear fit of all data.
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Figure SS. a) Frequency (V) and temperature (7) dependences of the ac magnetic susceptibility in-
phase (ym") and out-of-phase (ym") of @) 1 and b) 2 at zero dc field.
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Figure S6. Temperature (7) and frequency (v) dependent of the ac measurements (' versus v plots)
of 1 and 2 in a zero dc field.
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Figure S7. Selected Argand plots (ynm"” versus yu' plots) in a zero dc field for a) 1 and b) 2. Solid
lines (red and blue) were fitted by using a generalized Debye model (eq. 4).
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Table S1. These parameters in 1 were obtained from fittings using a generalized Debye model

T/K s 2T a /s
1.9 1.82 3.89 0.41 3.20x1073
2.0 1.66 3.67 0.42 3.10x1073
23 1.59 3.19 0.39 3.11x1073
2.7 1.09 2.72 0.41 3.42x1073
3.0 1.36 2.45 0.33 2.96x1073
3.5 1.39 2.11 0.29 3.42x1073
4.0 1.39 1.84 0.20 3.49x1075

Table S2. These parameters in 2 were obtained from fittings using a generalized Debye model

T/K s 2T o /s

1.82 10.60 15.70 0.20 1.30x1074
2.0 8.51 13.70 0.24 1.30x1074
2.2 7.90 12.30 0.23 1.29x1074
2.6 6.72 9.94 0.22 1.26x1074
2.8 6.29 9.07 0.21 1.25x1074
3.0 5.92 8.35 0.20 1.24x1074
34 4.78 7.22 0.29 1.14x1074
3.6 7.98 6.74 0.19 1.11x107%
3.8 4.67 6.33 0.21 1.11x107%
4.0 4.48 5.97 0.20 1.13x1074
4.2 4.50 5.64 0.15 1.06x1074
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Figure S8. Temperature (7) and frequency (v) dependences of the ac susceptibilities of 1 in a dc
field of 1000 Oe. a) y\' versus v plots, b) yv” versus v plots, and ¢) Argand plot. Black solid lines
were fitted by using an extended Debye model. d) Arrhenius plot for 1 in a dc field of 1000 Oe. The
solid lines were fitted using least-square analysis on the data in the high-7 region using the equation ¢
= 1oexp(A/kgT) with the kinetic parameters (A/hc = 18 cm, 7= 3.1 x 1076 s).
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Figure S9. Temperature (7) and frequency (v) dependences of the ac magnetic susceptibilities of 2
in an Hy. of 1000 Oe. a) yv' versus v plots, b) yv” versus v plots, and ¢) Argand plot. Black solid
lines were fitted by using an extended Debye model. d) Arrhenius plot for 2 in an Hy. of 1000 Oe.
The solid lines were fitted by using least-square analysis on the data in the high 7 region with the

equation 7 = roexp(A/kgT), and the kinetic parameters (A/hc = 35 cm, 5= 1.3 x 107 s).
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Figure S10. Arrhenius plots made by using parameters obtained from the yy,” versus v plots (Figures
10b and 11b) for a) 1 and b) 2 in a dc magnetic field of 1000 Oe. Red circles indicate the residual
quantum regime, which have a large margin of error. Therefore, these data cannot be used for

discussions (see main text).

Extended Debye Model: In order to understand the different relaxation mechanisms
corresponding to the two observed peaks, an extended Debye model (eq. 5) was used to fit 7; and

.

1 —
Xtotal(w) =Xt (XT_XS) b 1—a1+ 'Bl—az
1+ (iwty) 1+ (iwt,)

)

where ys is the adiabatic susceptibility, yr is the isothermal susceptibility, @ (= 2mnf) is the
angular frequency, 7; and 7, are the magnetization relaxation times, 7; and 7, describe the
distributions of the relaxation processes, £ is the weight of the first relaxation process, and (1-/)
corresponds to the second one. The real part and the imaginary part are given by eqs. 6 and 7,

respectively.
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ot 2(T=y)

X = (xr -xs){

1-
10051/20(171 (1 -pB)(wty) azcosl/zazn }

1+ Z(wrz)1 - azsinl/zazrr + (wt,)

(7

To elucidate the details of the Hy. dependence of 1, the v dependence of yy' and y\ " signals
in the range of 1-1488 Hz were measured in an Hy. of 1000 Oe (Figures S6a—c). Below 6 K,
however, the behavior deviated from that for a single relaxation process. Thus, we concluded
that the relaxation process was a mixture of QTM processes in the low-T7 region. It is possible to
suppress QTM by applying an Hy., but it cannot be completely suppressed. Therefore, in order to
separate the two relaxation processes, we analysed the data by using an extended Debye model
(eq. 5-7) to extract 7 (Figure S8a—c). One of the two 7 values has a large margin of error. This is
a QTM component, which is not completely suppressed by applying an Hy.. A/hc was estimated
to be 18 cm™! with 75 = 3.1 x 107 s from an Arrhenius plot for 1 in the 7 range of 2-6 K in an
Hy. of 1000 Oe (Figure S8d). The values of A/hc and 7, are on the same order of magnitude as
those for the Dy(III)-Pc double-decker complexes. These results confirm that the QTM process is
suppressed by applying an Hy., indicating a thermal relaxation process. These phenomena have
been observed for 2 in an Hy. of 1000 Oe (Figures S9a—c). A/hc was estimated to be 35 cm™! with
7o = 1.3 x 107% s from the Arrhenius plot in Figures S9d and S8b. However, these results confirm
that the QTM process is not completely suppressed by applying an Hy. of 1000 Oe, indicating
that a QTM process occurs for 7' < 3 K.

S11



