Electronic Supplementary Information for:

Redox and acid-base properties of asymmetric non-heme (hydr)oxo-bridged diiron complexes

Anna Jozwiuk,^a Audrey L. Ingram,^a Douglas R. Powell,^a Boujemaa Moubaraki,^b Nicholas F. Chilton,^b Keith S. Murray^b and Robert P. Houser*^c

 ^aDepartment of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
^bChemistry Department, Monash University, Clayton, Victoria 3168 Australia. ^cDepartment of Chemistry & Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA.
Fax: +1 970 351 2176; Tel: +1 970 351 2877; E-mail: robert.houser@unco.edu

Figure S1. UV-Vis spectrum of [(FeL)₂] (4) in MeCN (λ_{max} at 471 nm, $\epsilon = 1000$) (black) and after exposure to air (λ_{max} at 420 nm, $\epsilon = 8500$), (red).

Figure S2. Representation of the X-ray structure of the cationic portion of $[(FeL)_2(\mu-OH)]BPh_4 \cdot CH_2Cl_2$ (**1**·CH₂Cl₂).

Figure S4. UV-visible spectrum of a CH₃CN solution of 1.

Figure S5. Plot of molar susceptibility vs. temperature for crystalline 1 · CH₂Cl₂.

Figure S6. Change in absorbance at 505 nm of 9.1×10^{-5} M **2** with addition of benzoic acid (9.1 $\times 10^{-4}$ M) in acetonitrile.

Figure S7. Change in calculated pK_a value for **2** as more equivalents of benzoic acid are added. The theoretical value if no benzoic acid were present can be estimated from the y-intercept; 20.4 in this case.

Figure S8. UV-visible spectrum of $CoCp_2BPh_4$ (0.9 x 10⁻³ M) in MeCN. Molar absorptivity at 412 nm = 262 M⁻¹cm⁻¹.

Figure S9. Cyclic voltammogram (scan rate = 100 mV s^{-1} ; 0.1 M TBAPF₆ supporting electrolyte) of a 1 mM solution of **4** in CH₃CN.