The Various Architectures and Properties of a Series of Coordination

Polymers Tuned by the Central Metals

Xiu-Li Wang, * Jian Luan, Hong-Yan Lin, Mao Le, Guo-Cheng Liu

Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000, P. R. China

		· · · •	-
Co(1)-N(1)	2.174(2)	Co(2)-N(2)	2.237(3)
Co(1)-N(1)#1	2.174(2)	Co(2)-N(2)#2	2.237(3)
Co(1)-O(1W)	2.0877(18)	Co(2)-O(1)	2.0889(18)
Co(1)-O(1W)#1	2.0877(18)	Co(2)-O(1)#2	2.0889(18)
Co(1)-O(2W)	2.0599(19)	Co(2)-O(3W)	2.066(2)
Co(1)-O(2W)#1	2.0599(19)	Co(2)-O(3W)#2	2.066(2)
O(2W)-Co(1)-O(2W)#1	180	O(3W)-Co(2)-O(3W)#2	180
O(2W)-Co(1)-O(1W)	90.67(8)	O(3W)-Co(2)-O(1)	88.86(8)
O(2W)#1-Co(1)-O(1W)	89.33(8)	O(3W)#2-Co(2)-O(1)	91.14(8)
O(2W)-Co(1)-O(1W)#1	89.33(8)	O(3W)-Co(2)-O(1)#2	91.14(8)
O(2W)#1-Co(1)-O(1W)#1	90.67(8)	O(3W)#2-Co(2)-O(1)#2	88.86(8)
O(1W)-Co(1)-O(1W)#1	179.999(1)	O(1)-Co(2)-O(1)#2	180
O(2W)-Co(1)-N(1)	93.37(9)	O(3W)-Co(2)-N(2)	89.49(10)
O(2W)#1-Co(1)-N(1)	86.63(9)	O(3W)#2-Co(2)-N(2)	90.51(10)
O(1W)-Co(1)-N(1)	89.40(9)	O(1)-Co(2)-N(2)	91.32(9)
O(1W)#1-Co(1)-N(1)	90.60(9)	O(1)#2-Co(2)-N(2)	88.68(9)
O(2W)-Co(1)-N(1)#1	86.63(9)	O(3W)-Co(2)-N(2)#2	90.51(10)
O(2W)#1-Co(1)-N(1)#1	93.37(9)	O(3W)#2-Co(2)-N(2)#2	89.49(10)
O(1W)-Co(1)-N(1)#1	90.60(9)	O(1)-Co(2)-N(2)#2	88.68(9)

Table S1. Selected bond distances (Å) and angles (°) for complex 1

* Corresponding author. Tel.: +86-416-3400158

E-mail address: <u>wangxiuli@bhu.edu.cn</u> (X.-L. Wang)

O(1W)#1-Co(1)-N(1)#1	89.40(9)	O(1)#2-Co(2)-N(2)#2	91.32(9)		
N(1)-Co(1)-N(1)#1	180.00(5)	N(2)-Co(2)-N(2)#2	180		
Symmetry code: #1 -x + 2, -y + 1, -z - 1; #2 -x, -y + 1, -z					

Table S2. Selected bond distances (Å) and angles (°) for complex 2

Ni(1)-O(1W)#1	2.0387(19)	Ni(2)-O(3W)#2	2.038(2)			
Ni(1)-O(1W)	2.0387(19)	Ni(2)-O(3W)	2.038(2)			
Ni(1)-O(2W)	2.0567(18)	Ni(2)-O(1)#2	2.0595(19)			
Ni(1)-O(2W)#1	2.0567(18)	Ni(2)-O(1)	2.0595(19)			
Ni(1)-N(1)#1	2.121(2)	Ni(2)-N(2)#2	2.183(3)			
Ni(1)-N(1)	2.121(2)	Ni(2)-N(2)	2.183(3)			
O(1W)-Ni(1)-O(1W)#1	180.00(12)	O(3W)-Ni(2)-O(3W)#2	180			
O(1W)-Ni(1)-O(2W)#1	90.31(8)	O(3W)-Ni(2)-O(1)	91.66(8)			
O(1W)#1-Ni(1)-O(2W)#1	89.69(8)	O(3W)#2-Ni(2)-O(1)	88.34(8)			
O(1W)-Ni(1)-O(2W)	89.69(8)	O(3W)-Ni(2)-O(1)#2	88.34(8)			
O(1W)#1-Ni(1)-O(2W)	90.31(8)	O(3W)#2-Ni(2)-O(1)#2	91.66(8)			
O(2W)#1-Ni(1)-O(2W)	180	O(1)-Ni(2)-O(1)#2	180.00(7)			
O(1W)-Ni(1)-N(1)	86.50(9)	O(3W)-Ni(2)-N(2)#2	89.61(10)			
O(1W)#1-Ni(1)-N(1)	93.50(9)	O(3W)#2-Ni(2)-N(2)#2	90.39(10)			
O(2W)#1-Ni(1)-N(1)	89.73(9)	O(1)-Ni(2)-N(2)#2	88.90(9)			
O(2W)-Ni(1)-N(1)	90.27(9)	O(1)#2-Ni(2)-N(2)#2	91.11(9)			
O(1W)-Ni(1)-N(1)#1	93.50(9)	O(3W)-Ni(2)-N(2)	90.39(10)			
O(1W)#1-Ni(1)-N(1)#1	86.50(9)	O(3W)#2-Ni(2)-N(2)	89.61(10)			
O(2W)#1-Ni(1)-N(1)#1	90.27(9)	O(1)-Ni(2)-N(2)	91.10(9)			
O(2W)-Ni(1)-N(1)#1	89.74(9)	O(1)#2-Ni(2)-N(2)	88.89(9)			
N(1)-Ni(1)-N(1)#1	179.998(1)	N(2)#2-Ni(2)-N(2)	180			
Symmetry code: #1 -x, -y + 1, -z + 1; #2 -x + 2, -y + 1, -z						

Table S3. Selected bond distances (Å) and angles (°) for complex 3					
Cu(1)-O(1)#1	1.947(2)	Cu(1)-N(1)	2.000(3)		
Cu(1)-O(1)	1.947(2)	Cu(1)-N(1)#1	2.000(3)		
O(1)-Cu(1)-O(1)#1	180	O(1)-Cu(1)-N(1)#1	89.85(11)		
O(1)-Cu(1)-N(1)	90.15(11)	O(1)#1-Cu(1)-N(1)#1	90.15(11)		
O(1)#1-Cu(1)-N(1)	89.85(11)	N(1)-Cu(1)-N(1)#1	180.000(1)		
Symmetry code: $\#1 - x + 1/2, -y + 3/2, -z + 1$					

Table S4. Selected bond distances (Å) and angles (°) for complex 4

Zn(1)-O(1)	1.9240(14)	Zn(1)-N(1)	2.0461(16)	
Zn(1)-O(3)	1.9465(13)	Zn(1)-N(2)#1	2.0755(16)	
O(1)-Zn(1)-O(3)	107.92(6)	O(1)-Zn(1)-N(2)#1	112.26(7)	
O(1)-Zn(1)-N(1)	121.68(7)	O(3)-Zn(1)-N(2)#1	95.47(6)	
O(3)-Zn(1)-N(1)	109.61(6)	N(1)-Zn(1)-N(2)#1	106.74(6)	
Symmetry code: $\#1 - x + 1, -y, -z + 1$				

Table S5. Selected bond distances (Å) and angles (°) for complex ${\bf 5}$

Cd(1)-O(1)	2.2784(16)	Cd(1)-N(1)	2.3200(15)
Cd(1)-O(1W)	2.2925(14)	Cd(1)-O(5)#1	2.3538(13)
Cd(1)-O(4)	2.3037(13)	Cd(1)-O(3)	2.5293(13)
O(1)-Cd(1)-O(1W)	104.50(6)	O(4)-Cd(1)-O(5)#1	93.80(5)
O(1)-Cd(1)-O(4)	85.10(5)	N(1)-Cd(1)-O(5)#1	83.93(5)
O(1W)-Cd(1)-O(4)	92.33(5)	O(1)-Cd(1)-O(3)	137.90(5)
O(1)-Cd(1)-N(1)	135.79(6)	O(1W)-Cd(1)-O(3)	87.29(5)
O(1W)-Cd(1)-N(1)	85.59(5)	O(4)-Cd(1)-O(3)	53.71(4)
O(4)-Cd(1)-N(1)	138.21(5)	N(1)-Cd(1)-O(3)	84.51(5)
O(1)-Cd(1)-O(5)#1	84.87(6)	O(5)#1-Cd(1)-O(3)	89.21(5)
O(1W)-Cd(1)-O(5)#1	169.23(5)		
Symmetry code: $#1 - x + 1$,	−y, −z + 1		

Table S6. Hydrogen bonding geometries (Å, $^{\circ}$) of complexes 1, 4, 5						
Complex	D–H…A	D–H	Н…А	D····A	D–H…A	
1	O1W–H1WB…O4	0.85	1.86	2.7023	173	
	O1W–H1WA…O2	0.85	1.85	2.6892	167	
4	O1W–H1WA…O5	0.85	2.18	3.0119	168	
	O1W–H1WB…O4	0.85	2.20	3.0340	165	
5	O1W–H1WA…O2	0.85	1.99	2.8327	169	

Table S7 Coordination modes of metal ions, the 3-bpah and 1,4-BDC in complexes 1–5.

Complexes	Metal ions	3-bpah	Dihedral angle of two pyridyl rings (°)	M…M lengths (Å)	1,4-BDC	M…M lengths (Å)
1		R	63.23	10.67	XX	None
2	Ni1	R	63.28	10.63	XX	None
3	Cu1	R	82.51	10.89	3434	10.84
4	Zn1	R	73.65	10.40	70~	10.96
5	Cd1		72.19	6.91	70~	11.33 11.37

Fig. S1 The coordination environment of Ni(II) ions in complex 2 with 50% thermal ellipsoids.

Fig. S2 (a) The 1D chain for complex **1**; (b) View of the 3D supramolecular network

of complex 1.

Fig. S3 View of the 1D $[Cu(1,4-BDC)]_n$ chain in complex 3.

Fig. S4 View of the 3D supramolecular network of complex 4.

Fig. S5 View of the 3D supramolecular network of complex 5.

Fig.S7 The simulated (black line) and experimental (red/blue line) powder X-ray diffraction patterns for complexes 1–5.

Fig. S8 The TG curves of complexes 1–5.

Fig. S9 The fluorescent spectra recorded on powder samples of 4a and 5a (the guest-free form of 4 and 5).

Fig. S10 Fluorescence intensity histograms of 4a- and 5a-solvents.

Fig. S11 The fluorescent spectra of 4a-EtOH-H₂O and 5a-EtOH-H₂O with various amounts of ethanol (insert is graph of the fluorescent intensity of 4a-EtOH-H₂O and 5a-EtOH-H₂O as a function of ethanol content).

Fig. S12 Cyclic voltammograms of the 1-CPE and 2-CPE in 0.01 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution at different scan rates (from inner to outer: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mV s⁻¹), respectively. The inset shows the plots of the anodic and cathodic peak currents against scan rates.

Fig. S13 Cyclic voltammograms of the bare CPE in 0.01 M H₂SO₄ + 0.5 M Na₂SO₄ aqueous solution containing 1.0 mmol/L KNO₂, 1-CPE and 2-CPE in 0.01 M H₂SO₄ + 0.5 M Na₂SO₄ aqueous solution containing: 0.0 (a), 2.0 (b), 4.0 (c), 6.0 (d), and 8.0 (e) mmol/L KNO₂, respectively. Scan rate: 50 mV s⁻¹.