Supporting Information

A stable NHC-Coordinated Silagermenylidene Functionalized in Allylic Position and its Behaviour as a Ligand

Anukul Jana, Moumita Majumdar, Volker Huch, Michael Zimmer, and David Scheschkewitz*

Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66125 Saarbrücken, Germany

E-mail: scheschkewitz@mx.uni-saarland.de

- S-1 Content
- S-2 NMR Spectra
- S-17 UV/vis Spectra
- S-22 IR Spectra
- S-25 Crystallographic Details
- S-28 Computational Details
- S-43 References

Figure S1: ¹H NMR of 4-*E* in [D₆]-benzene at RT directly after sample preparation.

Figure S2: ¹H NMR of 4-*E* and 4-*Z* in $[D_6]$ -benzene after reaching equilibrium at RT.

Figure S3: ¹³C{¹H} NMR of 4-*E* and 4-*Z* in [D₆]-benzene after reaching equilibrium at RT.

Figure S4: Carbenic region of ${}^{13}C{}^{1}H$ NMR of 4-*E* and 4-*Z* in [D₆]-benzene at RT.

Figure S5: ¹³C{¹H} NMR of NHC^{iPr_2Me_2}·GeCl₂, **2** in [D₆]-benzene at RT.

Figure S6: ²⁹Si{¹H} NMR of 4-*E* and 4-*Z* in [D₆]-benzene after reaching equilibrium at RT.

Figure S7: ²⁹Si{¹H} NMR of 4-E and 4-Z in [D₈]-toluene after reaching equilibrium at 343 K.

Figure S8: ²⁹Si{¹H} NMR of 4-E and 4-Z in $[D_8]$ -toluene after reaching equilibrium at 273 K

Figure S9: ²⁹Si{¹H} NMR of 4-E and 4-Z in [D₈]-toluene after reaching equilibrium at 213 K

Figure S10: ¹H NMR of 4-E and 4-Z in [D₈]-toluene at 213 K

Figure S11: ¹H-²⁹Si 2D-NMR of 4-*E* and 4-*Z* in [D₆]-benzene after reaching equilibrium at RT.

Figure S12: ${}^{1}H{}^{29}Si$ 2D-NMR(zoom) of 4-*E* and 4-*Z* in [D₆]-benzene after reaching equilibrium at RT.

Figure S13: ¹H NMR of 4-*E* and 4-*Z* in [D₈]-toluene after reaching equilibrium at 343 K.

Figure S14: ¹H NMR of 4-E and 4-Z in [D₈]-toluene after reaching equilibrium at 273 K.

Figure S15: ¹H-²⁹Si 2D-NMR (zoom) of **4**-*E* and **4**-*Z* in [D₈]-toluene at 273 K.

Figure S16: ¹H NMR of 5-Z in [D₈]-toluene.

Figure S17: ¹H NMR of 5-*Z* in [D₈]-toluene after 10 days in the solid form.

Figure S18: ¹H NMR of a sample of 5-Z in [D₈]-toluene after 9 days in solution (complete isomerization of 5-Z to 5-E happened during this time).

Figure S19: ¹³C{¹H} NMR of a sample of **5**-*Z* in $[D_8]$ -toluene. Conversion to the **5**-*E* had mostly completed during the acquisition of the spectrum (minor signals correspond to **5**-*Z*).

Figure S20: ²⁹Si{¹H} NMR of a sample of 5-Z in [D₈]-toluene. Conversion to the 5-E had mostly completed during the acquisition of the spectrum (minor signals correspond to 5-Z).

Figure S21: ²⁹Si{¹H} NMR of a sample of **5**-*Z* in $[D_8]$ -toluene after 9 days in solution (complete isomerization of **5**-*Z* to **5**-*E* happened during this time).

Figure S22: ¹H NMR of 5-E in [D₈]-toluene.

Figure S23: ${}^{13}C{}^{1}H$ NMR of **5**-*E* in [D₈]-toluene.

Figure S24: ²⁹Si{¹H} NMR of 5-E in [D₈]-toluene.

Figure S25: 1H-²⁹Si 2D-NMR(zoom) of 5-E in [D₈]-toluene.

Figure S26: ¹H NMR of **6** in [D₈]-toluene.

Figure S27: 29 Si{¹H} NMR of **6** in [D₈]-toluene.

Figure S28: ¹H NMR of 6 in [D₈]-THF.

Figure S30: ${}^{29}Si{}^{1}H$ NMR of 6 in [D₈]-toluene.

Figure S31: $^{1}H^{-29}Si$ 2D-NMR(zoom) of 6 in [D₈]-THF.

Figure S32: UV/vis spectra of 4-E and 4-Z in hexane at different concentrations.

Figure S33: Linear regression of 4-E and 4-Z at 503 nm.

Figure S34: UV/vis spectra of 5-Z in hexane at different concentrations.

Figure S35: Linear regression of 5-Z at 503 nm.

Figure S36: UV/vis spectra of 5-E in hexane at different concentrations.

Figure S37: Linear regression of 5-E at 512 nm.

Figure S38: Linear regression of 5-E at 427 nm.

Figure S39: UV/vis spectra of 6 in THF at different concentrations.

Figure S40: Linear regression of 6 at 368 nm.

Figure S41: IR spectrum of 5-Z.

Figure S42: IR spectrum of 5-Z (zoom).

Figure S43: IR spectrum of 5-E.

Figure S44: IR spectrum of 5-E (zoom).

Figure S45: IR spectrum of 6.

Figure S44: IR spectrum of 6 (zoom).

Table S1. Crystal data and structure refinement for 4-E.

Identification code	sh3241a		
Empirical formula	C56 H89 Cl Ge N2 Si2		
Formula weight	954.51		
Temperature	133(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 20.3816(11) Å	α= 90°.	
	b = 10.9027(6) Å	β=90.840(3)°.	
	c = 25.5288(13) Å	$\gamma = 90^{\circ}.$	
Volume	5672.3(5) Å ³		
Z	4		
Density (calculated)	1.118 Mg/m ³		
Absorption coefficient	0.664 mm ⁻¹		
F(000)	2064		
Crystal size	0.16 x 0.15 x 0.05 mm ³		
Theta range for data collection	1.60 to 28.33°.		
Index ranges	-20<=h<=27, -14<=k<=13, -31<=l<=34		
Reflections collected	48361		
Independent reflections	14017 [R(int) = 0.1264]		
Completeness to theta = 28.33°	99.1 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.9707 and 0.9035		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	14017 / 179 / 589		
Goodness-of-fit on F ²	0.970		
Final R indices [I>2sigma(I)]	R1 = 0.0619, wR2 = 0.1011		
R indices (all data)	R1 = 0.1802, $wR2 = 0.1332$		
Largest diff. peak and hole	0.827 and -0.923 e.Å ⁻³		

Table S2. Crystal data and structure refinement for $5-E\cdot C_5H_{12}$.

Identification code	sh3359		
Empirical formula	C60H89 Cl Fe Ge N2 O4 Si2 x .25 C5 H12		
Formula weight	1140.44		
Temperature	122(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 13.2910(4) Å	$\alpha = 89.1430(10)^{\circ}.$	
	b = 19.9842(5) Å	β= 88.102(2)°.	
	c = 24.8636(7) Å	$\gamma = 76.122(2)^{\circ}.$	
Volume	6407.6(3) Å ³		
Z	4		
Density (calculated)	1.182 Mg/m ³		
Absorption coefficient	0.818 mm ⁻¹		
F(000)	2434		
Crystal size	0.34 x 0.29 x 0.15 mm ³		
Theta range for data collection	1.05 to 27.10° .		
Index ranges	-17<=h<=17, -25<=k<=25, -31<=l<=31		
Reflections collected	105034		
Independent reflections	28114 [R(int) = 0.0436]		
Completeness to theta = 27.10°	99.5 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.8872 and 0.7684		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	28114 / 504 / 1408		
Goodness-of-fit on F ²	1.427		
Final R indices [I>2sigma(I)]	R1 = 0.0619, wR2 = 0.1620		
R indices (all data)	R1 = 0.0967, wR2 = 0.1744		
Largest diff. peak and hole	2.142 and -0.789 e.Å ⁻³		

Table S3. Crystal data and structure refinement for 6.

Identification code	sh3315		
Empirical formula	C59 H89 Cl Fe Ge N2 O3 Si2		
Formula weight	1094.39		
Temperature	132(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 19.6288(5) Å	$\alpha = 90^{\circ}$.	
	b = 24.6607(7) Å	$\beta = 90^{\circ}$.	
	c = 24.6974(7) Å	$\gamma=90^{\circ}.$	
Volume	11955.0(6) Å ³		
Z	8		
Density (calculated)	1.216 Mg/m ³		
Absorption coefficient	0.873 mm ⁻¹		
F(000)	4672		
Crystal size	0.65 x 0.49 x 0.20 mm ³		
Theta range for data collection	1.56 to 27.92°.		
Index ranges	-25<=h<=17, -31<=k<=32, -31<=l<=32		
Reflections collected	104743		
Independent reflections	14312 [R(int) = 0.0577]		
Completeness to theta = 27.92°	99.8 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.8448 and 0.6026		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	14312 / 200 / 646		
Goodness-of-fit on F ²	1.022		
Final R indices [I>2sigma(I)]	R1 = 0.0442, w $R2 = 0.0995$		
R indices (all data)	R1 = 0.0732, wR2 = 0.1131		
Largest diff. peak and hole	1.184 and -0.536 e.Å ⁻³		

Computational Details

TDDFT calculation of NHC-stabilized silagermenylidene, Tip₂Si=Ge:NHC^{*i*Pr₂Me₂} (II):

The calculation was performed using X-ray coordinates of II in the presence of heptane as the solvent in Tomasi's Polarized Continuum Model (PCM) at the at the B3LYP level of theory and 6-31G(d,p) basis set, using *Gaussian 09* suite of programs.^{S1}

TDDFT output section:

Excitation energies and oscillator strengths: Singlet-A 2.8237 eV 439.08 nm Excited State 1: f=0.2150 <S**2>=0.000 186 -> 187 0.65859 186 -> 188 0.11108 186 -> 190 -0.16433 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -4075.13936484Copying the excited state density for this state as the 1-particle RhoCI density. 3.1436 eV 394.40 nm Excited State 2: Singlet-A f=0.0531 <S**2>=0.000 185 -> 187 -0.10320 186 -> 187 -0.13050 0.67695 186 -> 188 Singlet-A Excited State 3: 3.3653 eV 368.42 nm f=0.0836 <S**2>=0.000 185 -> 187 0.54228 186 -> 188 0.15366 186 -> 190 0.39857 Excited State 4: Singlet-A 3.4244 eV 362.06 nm f=0.0198 <S**2>=0.000 185 -> 187 -0.41294 186 -> 189 -0.24211 186 -> 190 0.50002

Excited f=0.0094 185 186	State <s**2>= -> 187 -> 189</s**2>	5: 0.000 -	Singlet- 0.10328 0.65678	A	3.4660	eV	357.71	nm
186	-> 190		0.21756					
Excited f=0.0100	State <s**2>=</s**2>	6: 0.000	Singlet-	A	3.6781	eV	337.09	nm
186	-> 191		0.69103					
Excited f=0.0124	State <s**2>=</s**2>	7: 0.000	Singlet-	A	3.8296	eV	323.76	nm
186 186	-> 192 -> 194		0.66052 0.10587					
Excited	State	8:	Singlet-	A	4.2175	eV	293.98	nm
185 186	-> 188 -> 193	-	0.49449 0.47357					
Excited f=0.1301	State <s**2>=</s**2>	9: 0.000	Singlet-	A	4.2292	eV	293.16	nm
185	-> 188		0.46036					
180	-> 193		0.51926					
Excited f=0.0345	State 1 <s**2>=</s**2>	0:	Singlet-	A	4.4742	eV	277.11	nm
182	-> 187		0.11140					
185	-> 190	_	0.25113					

Contour plots of II at 0.04 isosurface:

Theoretical calculation of NHC-stabilized silagermenylidene, Tip(SiTip₂Cl)Si=Ge:NHC^{*i*Pr₂Me₂} (4).

DFT calculations were performed on model systems **4Dip**-*E* and **4Dip**-*Z* (Dip = $2,6^{-i}Pr_2C_6H_3$ instead of Tip = $2,4,6^{-i}Pr_3C_6H_2$) at the B3LYP level of theory with the 6-31G(d,p) basis set using *Gaussian 03* suite of programs.^{S2} Compounds **4Dip**-*E* and **4Dip**-*Z* were optimized at the stationary point with number of imaginary frequency NIMAG = 0. The ²⁹Si{¹H} NMR and ¹³C{¹H} NMR for **4Dip**-*E* and **4Dip**-*Z* were computed at the GIAO level with SCRF (solvent=benzene) correction, 6-311+G(2d,p) basis set on Ge, Si and Cl atoms, and 6-31G(d,p) basis set on C, N and H atoms.

NIMAG

0

0

Cartesian coordinates of calculated stationary points

4Dip-E

Ge	1.66978100	-1.45096800	-0.08428900
Cl	-2.88697700	1.21540300	-1.86807000
Si	-2.00765300	-0.09084600	-0.40229000
Si	0.37995500	0.32052500	-0.61329300
Ν	4.51694100	-0.50278100	-0.80833800
Ν	4.25384000	-0.82268800	1.32407400
C	-2.99068200	-1.70791400	-0.91079900
C	-4 41713000	-1 70894800	-0 81912300
C	-5 14258100	-2 80695000	-1 30378300
Ч	-6 22494700	-2 80068800	-1 21804900
C	-4 51925600	-3 89427200	-1 89937300
C	-3 13511500	-3 00002000	_1 98104400
U U	-2 62240100	-3.90992900 -4.76200100	-2 42026200
H C	-2.63349100	-4.76200100	-2.42936300
	-2.36566800	-2.85305200	-1.4//98/00
	-5.26241700	-0.58496200	-0.21159100
H	-4.60552200	0.23024100	0.08221400
C	-5.98684500	-1.04309000	1.06954200
H	-6.68120300	-1.86609500	0.86888200
H	-6.56565400	-0.21451300	1.49239400
Н	-5.27606500	-1.37661300	1.83022000
С	-6.26669800	-0.00652200	-1.22781200
H	-5.75923700	0.33566100	-2.13317500
Н	-6.79738800	0.84633200	-0.78988600
Н	-7.02099000	-0.74498000	-1.51912300
С	-0.85713400	-3.01017200	-1.54490500
Н	-0.43550700	-2.24259200	-0.89399800
С	-0.27085200	-2.75326300	-2.94314600
Н	-0.50495400	-3.57019100	-3.63556500
Н	0.81636200	-2.65007200	-2.85472300
Н	-0.65683500	-1.82272300	-3.37022900
С	-0.35981000	-4.35382200	-0.98223000
Н	-0.79811200	-4.56020000	-0.00101700
Н	0.72838900	-4.32093500	-0.86619500
Н	-0.60590200	-5.19265700	-1.64197800
С	-2.49822100	0.42185900	1.40611100
С	-2.35575800	-0.60336500	2.38975300
C	-2 80760800	-0 39267900	3 69850700
н	-2 70053800	-1 18608900	4 43260300
C	-3 38363600	0 81303300	4 07426700
C	-3 45858800	1 84237500	3 1/552600
U U	-3.97264000	2 70777400	2 45210000
П	-3.87284900	2.79777400	1 92645000
C	-3.00498100	1.00907200	1.02043900
	-1.05/0/500	-1.94031000	2.121011UU
п	-1.31646500	-1.96524/00	1.U8389/UU
C	-0.3/594200	-2.0/119100	2.96643100
H 	0.25526200	-1.18866600	2.83690300
Н	0.19920800	-2.94488200	2.64153800
Н	-0.60456300	-2.18419800	4.03174700

С	-2.57887300	-3.15519200	2.32662200
Н	-2.94511500	-3.20814300	3.35768500
Н	-2.03545900	-4.08423400	2.12206500
Н	-3.44349100	-3.11628100	1.66017000
С	-3.09244000	2.94003500	0.93979200
H	-2.50562200	2.76791200	0.03914000
С	-4.54160100	3.23968300	0.50861400
Н	-4.97406300	2.41891100	-0.06618700
H	-4.57309200	4.13735000	-0.11883200
H	-5.17990700	3.41862500	1.38163500
С	-2.49015400	4.19026400	1.61240700
H	-3.08249400	4.52989300	2.46891500
H 	-2.46142100	5.01295700	0.89026700
H	-1.46888900	4.01312500	1.95377100
C	0.65824300	2.22341100	-0.74010800
C	0.35179000	2.90406700	-1.95641000
C	0.39919900	4.3018/600	-1.99805300
H	0.15586200	4.81995100	-2.91966300
C	0.75484200	5.04411800	-0.8/60/600
	1.13623700	4.38543300	0.28523900
H C	1 12452000	4.96801100	1.14370900
C	1.12432900	2.90500500	-2.25026100
U U	-0.33187000	1 17037400	-2 99927500
п С	-0.88655400	2 83227000	-1 22211100
ч	-1 81440200	3 11313800	-3 71981300
н	-1 13871100	2 15124200	-5 04154900
н	-0 45326500	3 73123300	-4 67531900
C	1,43310600	1.87812500	-3.97602200
H	1.92256600	2.81895100	-4.25260800
Н	1.27443800	1.29454200	-4.89028500
Н	2.11322100	1.32157000	-3.32743500
С	1.69571100	2.35302500	1.63812400
Н	1.74499800	1.27185500	1.47220600
С	3.13888700	2.84277500	1.87480600
Н	3.78242900	2.60555100	1.02165200
Н	3.56600900	2.37200800	2.76641400
Н	3.18363300	3.92497400	2.03368400
С	0.82402100	2.58875900	2.88287200
Н	0.71628300	3.65714000	3.10217500
Н	1.27631000	2.11739000	3.76348600
H	-0.17601800	2.16682100	2.75355600
С	3.57542600	-0.72988500	0.14628000
С	5.79517200	-0.48605000	-0.23616700
С	5.62888800	-0.68650200	1.10634400
С	4.16530400	-0.58976100	-2.25032300
Н	3.08653500	-0.40865100	-2.25936900
С	4.83303700	0.47888000	-3.11697800
H 	4.72876800	1.47222200	-2.67149300
H	4.33348300	0.49726100	-4.08945100
Н	5.89141400	0.28257100	-3.299/5000
	4.3/951000	-2.023/0300	-2./4653400
н	5.4346ULUU	-2.316U6/UU	-2./3306400
н	4.01333400	-2.11/53/00	-3.//344800

H	3.80894400	-2.71271300	-2.11671500
С	7.06721800	-0.26081000	-0.98923900
H	7.13424500	0.75298100	-1.39649900
H	7.18365700	-0.96212700	-1.82096100
H	7.92019300	-0.40315700	-0.32333300
С	6.67057200	-0.72407400	2.17844500
Н	7.66498400	-0.69633500	1.72931100
H	6.61126400	-1.63611300	2.78007800
Н	6.59496100	0.12964400	2.85952500
С	3.56142800	-1.28244200	2.55582400
Н	2.51066900	-1.05831700	2.34652000
С	3.69944400	-2.80133700	2.70618600
H	4.73685900	-3.09858100	2.89158100
H	3.34016700	-3.30949900	1.80732400
H	3.09481500	-3.14106900	3.55258900
С	3.95173100	-0.52263500	3.82514300
H	4.92250300	-0.82767800	4.22211400
H	3.20476600	-0.73579900	4.59542800
H	3.96303100	0.55658900	3.66079400
H	0.76344500	6.13002300	-0.91836300
H	-3.74707900	0.95919600	5.08785600
H	-5.10627000	-4.72348400	-2.28504500

4Dip-Z

Ge	-2.35140800	1.60372300	0.11701000
Cl	2.11950000	-0.12107700	-2.57494700
Si	1.55054800	-0.65841700	-0.56892700
Si	-0.24260700	0.91094100	-0.16309200
N	-4.50431600	-0.25231400	-0.94904000
N	-4.23293600	-0.53655000	1.18782700
C	1,47283600	-2.58539000	-0.82276000
C	2 68629700	-3 28597800	-1 11554700
C	2.66148000	-4 67574200	-1 29312000
С и	2.00140000	-5 19564900	-1 50631400
n C	1 / 21 21 500	-5.19304900	-1.21656700
C	0 20770000	-1 72842200	-0.96388200
с и	-0.63096900	-4.72042200	-0.90308200
п	-0.03090900	-3.20930900	-0.92023300
C	0.27211400	-3.34007600	-0.76322400
	4.06013500	-2.63260600	-1.29190800
H	3.9641/300	-1.56167400	-1.13411400
C	4.58810800	-2.82293100	-2.72806900
H 	4.//160400	-3.8/866800	-2.95486200
H	5.53688900	-2.289/4400	-2.85566100
H	3.8/86/200	-2.43532300	-3.46355500
	5.08/91800	-3.1351//00	-0.26005600
H	4./4/45/00	-2.952/1400	0.76239400
H 	6.04021400	-2.61112000	-0.394/8000
H	5.28332500	-4.20757200	-0.36835300
С	-1.10732400	-2.73005600	-0.53719100
H	-0.99975900	-1.67608400	-0.26490900
С	-1.87358900	-3.41125900	0.61134700
H	-2.09075700	-4.46191900	0.39436000
H	-2.83077200	-2.90692200	0.77137900
H	-1.30462000	-3.37801300	1.54597200
С	-1.93153100	-2.77967500	-1.83643300
Η	-1.44264000	-2.21513900	-2.63602100
H	-2.92376600	-2.35420700	-1.66677000
Η	-2.05962800	-3.81060600	-2.18401200
С	2.91508800	-0.30170400	0.75974700
С	4.03528900	0.56798700	0.60012900
С	5.03784600	0.58287700	1.58138200
Η	5.90420800	1.22067700	1.43747100
С	4.94530700	-0.18002800	2.73751500
С	3.81166800	-0.95382500	2.94559300
H	3.71209900	-1.51449100	3.87045800
С	2.79241500	-1.02325400	1.98694200
С	4.23663600	1.52904100	-0.57780200
Н	3.31555400	1.56591500	-1.15600500
С	4.50342600	2.97297600	-0.10757000
Н	3.72049600	3.32440700	0.56733800
Н	4.52165800	3.64267700	-0.97369400
Н	5.46833000	3.07249500	0.40152300
С	5.36559300	1.06702100	-1.51947800
Н	6.32305500	1.00949700	-0.98912500

Η Η С Η С Η Η Η С Η Η Η С С С Η С С Η С С Η С Η Η Η С Η Н Η С Η С Η Η Η С Н Η Η С С С С Н С Η Н Η С Η Η Η С

5 48431800	1 77779300	-2 34467000
5.40451000	1.77775500	1 05470200
5.15992700	0.08664300	-1.954/0200
1.57062200	-1.87088900	2.36442000
0.83629700	-1.81341800	1.55531700
1.92004900	-3.35854500	2.55645900
2.37844900	-3.78277400	1.66118800
1.01759300	-3.93772100	2.78160500
2 61473200	-3 49473000	3 39227600
0 86532200	-1 32/32600	3 62204600
1 61204000	-1.32432000	1 502204000
1.51204800	-1.38494500	4.50339300
-0.03544700	-1.91180800	3.834/4100
0.56904800	-0.28055600	3.49492200
0.57226900	2.67909400	-0.07267300
0.87030700	3.27513700	1.18574500
1.27667500	4.61492900	1.25042100
1.49511200	5.06150200	2.21642200
1.39513300	5.38744800	0.10148100
1.08746400	4 82398100	-1.13046300
1 15834700	5 43548000	-2 02549700
0 66622700	3 /0122500	-1 23836600
0.00022700	2.49122300	-1.23030000
0.71901000	2.52646400	2.50004400
0.51/80400	1.4//60000	2.26018/00
1.98751100	2.56304000	3.37966300
2.85612200	2.17506500	2.84248800
1.84625000	1.95196400	4.27822100
2.22140200	3.57986800	3.71393800
-0.49806000	3.04233500	3.29839700
-0.37631400	4.09742100	3.56773500
-0.62414800	2.47383200	4.22822000
-1.41398800	2,94995700	2.70643700
0 26486100	2 99707500	-2 62849200
0 09289000	1 91709500	-2 56011500
	2 64100000	-2 07107700
-1.00303400	3.04100900	-3.07107700
-1.85684300	3.43709500	-2.34632300
-1.3/356100	3.24948200	-4.04832800
-0.96456700	4.72852300	-3.16402000
1.35594400	3.22100700	-3.69032400
1.53257300	4.28620900	-3.87664100
1.05430200	2.76931600	-4.64192000
2.30389900	2.76713700	-3.39111100
-3.66855000	0.03000500	0.08714500
-5.61090300	-0.97866200	-0.49699800
-5,44021700	-1.15799600	0.84964500
-4 29427600	0 39427400	-2 27343600
-3 23828600	0.59427400	-2 23380900
	-0 53076400	-3 17571000
	-U.JJZ/04UU	-3.4/3/10UU
-3.95896/00	-1.4/919500	-3.35093200
-4.0/3//300	-0.03485800	-4.35/49200
-5.53961100	-0.74076300	-3.68579700
-5.13571500	1.67141300	-2.37468300
-6.20763400	1.45083500	-2.41446000
-4.86927600	2.21334400	-3.28712900
-4.94212500	2.32913800	-1.52322300
-6.72147700	-1.46975700	-1.36917500

Н	-6.38483000	-2.23315600	-2.07797800
Н	-7.18029600	-0.66047600	-1.94518900
Н	-7.50531800	-1.91645300	-0.75475400
С	-6.31574300	-1.89674300	1.81070500
Н	-7.24840500	-2.18106000	1.31985000
Н	-6.57836800	-1.28709000	2.68029400
Н	-5.84476400	-2.81461200	2.17730200
С	-3.69295600	-0.23920200	2.54221300
Н	-2.67844400	0.11338100	2.32778200
С	-4.46624500	0.92461900	3.17139600
Н	-5.50002800	0.65215800	3.40828400
Н	-4.47318900	1.78408100	2.49555200
Н	-3.97610400	1.22896800	4.10103700
С	-3.58705900	-1.45666900	3.46239800
Н	-4.55479100	-1.77919900	3.85365700
Н	-2.96522000	-1.18371500	4.32022900
Н	-3.11081400	-2.30120100	2.96053000
Н	1.71462900	6.42427100	0.16696600
Н	5.73690000	-0.15094600	3.48121700
Н	1.48526500	-6.47890100	-1.36259400

Contour plots at 0.04 isosurface:

4Dip-E

4Dip-Z

Theoretical calculation of 6:

DFT calculation was performed on simpler model system **6Dip** (Dip instead of Tip) at the B3LYP level of theory [basis sets: 6-311++G(d,p) for Ge, 6-31G(d,p) for Si, Cl, C, N, O and H, LANL2DZ for Fe], using *Gaussian 03* suite of programs. Compounds **6Dip** was optimized at the stationary point with number of imaginary frequency NIMAG = 0. The ²⁹Si NMR for **6Dip** was computed at the GIAO level with SCRF(solvent=toluene) correction, 6-311+G(2d,p) basis set on Ge, Si and Cl atoms, 6-31G(d,p) basis set on C, N, O and H atoms, LANL2DZ for Fe.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

Cartesian coordinates of 6Dip:

Ge	0.59819	-0.75008	0.46536
Fe	-0.58078	-0.10179	-1.8522
Cl	-1.0064	-3.79794	-0.72573
Si	0.14034	1.54105	-0.22528
Si	-1.42136	-1.7029	-0.3521
Ν	2.85593	-2.69265	-0.79362
Ν	3.07825	-2.24589	1.32477
0	-0.86168	-2.26295	-3.79275
0	-2.80611	1.42036	-2.9427
0	1.51324	1.02191	-3.55569
С	1.47066	2.85983	-0.7968
С	2.88886	2.71442	-0.76395
С	3.71203	3.81374	-1.04789
Н	4.79067	3.69488	-0.99977
С	3.18762	5.04727	-1.40822
С	1.8114	5.17868	-1.52791
Н	1.39302	6.12364	-1.86119
С	0.95062	4.11054	-1.24158
С	3.62115	1.39721	-0.50246
Н	2.87131	0.61684	-0.35114
С	4.47173	0.99819	-1.72725
Н	3.88066	1.01553	-2.64528
Н	4.88941	-0.00618	-1.59282
Н	5.314	1.68472	-1.86308
С	4.52265	1.4312	0.74675
Н	5.28992	2.20807	0.66406
Н	5.04217	0.47259	0.8615
Н	3.95433	1.62353	1.65933
С	-0.53322	4.34919	-1.51074
Н	-1.0883	3.45778	-1.20271
С	-0.79182	4.51753	-3.02248
Н	-0.29899	5.41546	-3.41067
Н	-1.86497	4.61082	-3.22071
Н	-0.41427	3.65915	-3.58604
С	-1.09815	5.53742	-0.7116
Н	-0.95234	5.39862	0.36289
Н	-2.17094	5.64969	-0.8975
Н	-0.61665	6.47708	-1.00253
С	-0.80653	2.4498	1.25155
С	-0.01101	3.01838	2.29655

С Н С С Н С С Η С Η Η Η С Η Η Η С Η С Η Η Η С Η Η Η С С С Η С С Η С С Н С Н Η Н С Н Η Η С Η С Н Η Η С Η Η Η

-0.	58397	3.860	609	3.2533
0.	04334	4.289	92 c	4.03231
-1.	93387 73376	4.1/	0 137	3.22943 2.26365
-3.	79834	3.79		2.26136
-2.2	21284	2.711	192	1.29361
1.	47318	2.720	066	2.50323
1.	81582	2.094	45	1.67853
2.1	33841	3.994	493	2.50893
2.	1999	4.570	036	1.59062
3.	40039	3.740)34	2.59243
2.	09254 68352	4.642	256 785	3.35/
1	36589	2.472	257	4.67981
2.	74308	1.65	948	3.92946
1.1	10515	0.97	797	3.77399
-3.2	26592	2.080	668	0.37377
-2.	77626	1.332	154 ·	-0.24056
-3.	94135	3.11	531 ·	-0.5563
-4.	40864	3.918	5 1 E 4	0.02474
-4.	72373 24122	2.03.	154 ·	-1.25724
-4	35813	1.360	601	1.19143
-3.	9324	0.659	976	1.90591
-5.	01851	0.800	632	0.52344
-4.	9803	2.075	545	1.74726
-3.	09226	-1.914	429	0.57753
-3.1	19207	-2.054	447	1.98969
-4.	45658 52001	-2.190	64 500	2.5/913
-4.	61382	-2.20	384	1 81222
-5.	51682	-2.170	084	0.42784
-6.	41778	-2.24	785	-0.17379
-4.1	27806	-2.011	126	-0.20635
-1.	98738	-2.11	517	2.92749
-1.	08517	-2.054	491	2.3147
-1.	94361	-0.925	509 727	3.90383
-1. -1	89304 06231	-0.02	131 385	3.30/33
-2.	82712	-0.900	166	4.55138
-1.	93565	-3.458	388	3.68163
-2.	7951	-3.586	651	4.34843
-1.	03215	-3.515	598	4.29969
-1.	9271	-4.302	215	2.98389
-4.2	268	-2.03		-1.73496
-3.	∠0∠⊥/ 22737	-1 000	120 . 120 .	-2.0/300 -2 36538
-5. -6	27337	-1.234	477	-2.13117
-5.1	12678	-1.021	-,, 109 ·	-3.45589
-5.	01325	0.005	571 -	-2.02127
-4.	56183	-3.45	584	-2.26031
-3.	84954	-4.180	098	-1.85764
-4.	49358	-3.479	931	-3.35357
-5.	57082	-3.778	543	-1.97947

С	2.29164	-1.99674	0.2331
С	4.00129	-3.35763	-0.35597
С	4.13585	-3.08597	0.97813
С	2.23835	-2.82394	-2.14623
Н	1.29596	-2.29415	-2.03104
С	3.03847	-2.11953	-3.24413
Н	3.24962	-1.08303	-2.98665
Н	2.43738	-2.12038	-4.15833
Н	3.98029	-2.62642	-3.47268
С	1.92864	-4.28348	-2.50281
Н	2.80845	-4.82207	-2.86458
Н	1.18729	-4.28446	-3.30598
Н	1.49483	-4.81948	-1.65707
С	4.89566	-4.19866	-1.2127
Н	5.80747	-4.44076	-0.6642
Н	5.19673	-3.68044	-2.1259
Н	4.42529	-5.14209	-1.50225
С	5.20138	-3.57305	1.90988
Н	5.80578	-4.33037	1.40828
Н	4.78674	-4.03817	2.80812
Н	5.87421	-2.77076	2.22806
С	2.70284	-1.84693	2.71079
Н	1.94888	-1.06873	2.56568
С	3.852	-1.22565	3.51176
Н	4.56117	-1.96688	3.8847
Н	3.42455	-0.71901	4.38136
Н	4.39371	-0.48057	2.92509
С	2.03418	-3.01927	3.43818
Н	1.17909	-3.39295	2.86942
Н	1.67498	-2.68221	4.41536
Н	2.72826	-3.84868	3.60569
С	-0.74811	-1.44659	-2.97347
С	-1.95252	0.81825	-2.43675
С	0.7276	0.60184	-2.81061
Н	3.84479	5.88627	-1.62027
Н	-2.364	4.8516	3.96518
Н	-6.58365	-2.3574	2.28933

Contour plots of 6Dip at 0.04 isosurface:

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

References:

- S1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.