Dimeric 1,3-propanediaminetetraacetato lanthanides as the precursors of catalysts for the oxidative coupling of methane

Mao-Long Chen, Yu-Hui Hou, Wen-Sheng Xia, Wei-Zheng Weng, Ze-Xing Cao*, Zhao-Hui Zhou*, Hui-Lin Wan

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, Fax: +86 592 2183047; Tel: +86 592 2184531; E-mail: zxcao@xmu.edu.cn, zhzhou@xmu.edu.cn

Fig. S1 Anion structure of dimeric complex (NH ₄) ₂ [Ce ₂ (pdta) ₂ (H ₂ O) ₄]·8H ₂ O (2) in 30% thermal
ellipsoids
Fig. S2 Anion structure of dimeric complex K ₂ [La ₂ (pdta) ₂ (H ₂ O) ₄]·11H ₂ O (3) in 30% thermal ellipsoids
Fig. S3 Anion structure of dimeric complex $K_2[Ce_2(pdta)_2(H_2O)_4] \cdot 11H_2O$ (4) in 30% thermal ellipsoids
Fig. S4 3D supramolecular network of $[La_2(1,3-pdta)_2(H_2O)_4]_n \cdot [Sr_2(H_2O)_6]_n \cdot [La_2(1,3-pdta)_2(H_2O)_2]_n \cdot 18nH_2O$ (5)
Fig. S5 ¹ H NMR spectrum of H_4 pdta in D_2O , DSS was used as an internal reference
Fig. S6 ¹ H NMR spectrum of $(NH_4)_2[La_2(pdta)_2(H_2O)_4] \cdot 8H_2O$ (1) in D ₂ O, DSS was used as an internal reference
Fig. S7 IR spectrum of $(NH_4)_2[La_2(1,3-pdta)_2(H_2O)_4] \cdot 8H_2O(1)$
Fig. S8 IR spectrum of $(NH_4)_2[Ce_2(1,3-pdta)_2(H_2O)_4] \cdot 8H_2O$ (2)
Fig. S9 IR spectrum of $K_2[La_2(1,3-pdta)_2(H_2O)_4] \cdot 11H_2O(3)$
Fig. S10 IR spectrum of $K_2[Ce_2(1,3-pdta)_2(H_2O)_4] \cdot 11H_2O(4)$
Fig. S11 IR spectrum of $[La_2(1,3-pdta)_2(H_2O)_4]_n \cdot [Sr_2(H_2O)_6]_n \cdot [La_2(1,3-pdta)_2(H_2O)_2]_n \cdot 18nH_2O$ (5)
Fig. S12 TG-DTG curves of (NH ₄) ₂ [La ₂ (1,3-pdta) ₂ (H ₂ O) ₄]·8H ₂ O (1)8

Fig. S1 Anion structure of dimeric complex (NH₄)₂[Ce₂(pdta)₂(H₂O)₄]·8H₂O (**2**) in 30% thermal ellipsoids

Fig. S2 Anion structure of dimeric complex K₂[La₂(pdta)₂(H₂O)₄]·11H₂O (3) in 30% thermal

ellipsoids

Fig. S3 Anion structure of dimeric complex $K_2[Ce_2(pdta)_2(H_2O)_4] \cdot 11H_2O$ (4) in 30% thermal ellipsoids

Fig. S4 3D supramolecular network of $[La_2(1,3-pdta)_2(H_2O)_4]_n \cdot [Sr_2(H_2O)_6]_n \cdot [La_2(1,3-pdta)_2(H_2O)_2]_n \cdot 18nH_2O$ (5)

Fig. S5 ¹H NMR spectrum of H₄pdta in D₂O, DSS was used as an internal reference.

Fig. S6 ¹H NMR spectrum of (NH₄)₂[La₂(pdta)₂(H₂O)₄]·8H₂O (1) in D₂O, DSS was used as an internal reference.

Fig. S7 IR spectrum of $(NH_4)_2[La_2(1,3-pdta)_2(H_2O)_4] \cdot 8H_2O(1)$

Fig. S8 IR spectrum of $(NH_4)_2[Ce_2(1,3-pdta)_2(H_2O)_4] \cdot 8H_2O(2)$

Fig. S9 IR spectrum of K₂[La₂(1,3-pdta)₂(H₂O)₄]·11H₂O (3)

Fig. S10 IR spectrum of $K_2[Ce_2(1,3-pdta)_2(H_2O)_4] \cdot 11H_2O$ (4) 9

Fig. S11 IR spectrum of $[La_2(1,3-pdta)_2(H_2O)_4]_n \cdot [Sr_2(H_2O)_6]_n \cdot [La_2(1,3-pdta)_2(H_2O)_2]_n \cdot 18nH_2O$ (5)

Fig. S12 TG-DTG curves of $(NH_4)_2[La_2(1,3-pdta)_2(H_2O)_4] \cdot 8H_2O(1)$

Sample	T/°C	Conv CH ₄ /%	Sel C ₂ /%	Yield C ₂ /%
La ₂ O ₂ CO ₃	550	0.0	0.0	0.0
	600	13.10	28.38	3.72
	650	17.36	42.37	7.35
	700	23.02	45.75	10.53
	750	29.62	46.57	13.79
	800	29.93	45.61	13.65
La_2O_3 , $SrCO_3$ and $La_2O_2CO_3$	550	12.63	24.05	3.04
	600	26.46	47.17	12.48
	650	29.87	46.31	13.83
	700	29.09	50.25	14.62
	750	29.69	51.74	15.36
	800	30.94	50.71	15.69

Table S1 The catalytic performances of thermal decomposition products from 1 and 5 in oxidative coupling of methane ($CH_4/O_2 = 2.8/1$, GHSV = 15000 mL·g⁻¹·h⁻¹)