Facial Synthesis of Highly Fluorescent BF₂ Complexes Bearing Isoindolin-1-one Ligand

Naixun Gao, Chi Cheng, Changjiang Yu, Erhong Hao, * Shengyuan Wang, Jun Wang,

Yun Wei, Xiaolong Mu and Lijuan Jiao*

Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory

of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui

Normal University, Wuhu, Anhui, China 241000.

*To whom correspondence should be addressed. E-mail:

haoehong@mail.ahnu.edu.cn,jiao421@mail.ahnu.edu.cn

Contents:

1. Crystal data for 1a and 1c	S2
2. Table S1	S4
3. UV-Vis and fluorescence spectra	S5
4. Fluorescence lifetime decay curves	S12
5. Electrochemical spectra	S22
6. Copies of ¹ H and ¹³ C NMR spectra	S24
7. High resolution mass spectra for all new compounds	S30

1. Crystal data for 1a and 1c

Fig. S1. Intermolecular crystal packing of 1a through H-bonding.

Fig. S2. Intermolecular crystal packing of 1c through H-bonding.

compound	Bond	Bond lengths
1a	N(1)-C(1)	1.407(17)
	N(1)-C(8)	1.371(17)
	N(2)-C(8)	1.289(16)
	N(2)-C(9)	1.385(15)
	N(3)-C(9)	1.356(17)
	C(1)-O(1)	1.207(18)
	B(1)-N(1)	1.518(17)
	B(1)-N(3)	1.589(19)
	F(1)-H(1)	2.825(9)
1c	N(1)-C(1)	1.400(37)
	N(1)-C(8)	1.351(52)
	N(2)-C(8)	1.304(38)
	N(2)-C(9)	1.356(41)
	N(3)-C(9)	1.319(44)
	C(1)-O(1)	1.204(57)
	B(1)-N(1)	1.546(5)
	B(1)-N(3)	1.579(45)
	C(9)-S(1)	1.718(30)
	F(1)-H(1)	2.646(21)

2. Table S1. Selected bond lengths (Å) for crystals 1a and 1c

3. UV-Vis and fluorescence spectra

Fig. S3. Absorption (top) and emission (bottom) spectra of 1a recorded in different solvents.

Fig. S4. Absorption (top) and emission (bottom) spectra of 1b recorded in different solvents.

Fig. S5. Absorption (top) and emission (bottom) spectra of **1c** recorded in different solvents.

Fig. S6. Absorption (top) and emission (bottom) spectra of **1a** (black), **1b** (red), **1c** (blue) and **1d** (magenta) in hexane.

Fig. S7. Absorption (top) and emission (bottom) spectra of 1a (black), 1b (red), 1c (blue) and 1d (magenta) in acetonitrile.

Fig. S8. Absorption (top) and emission (bottom) spectra of **1a** (black), **1b** (red), **1c** (blue) and **1d** (magenta) in tetrahydrofuran.

Fig. S9. Absorption (top) and emission (bottom) spectra of 1a (black), 1b (red), 1c (blue) and 1d (magenta) in toluene.

4. Fluorescence lifetime decay curves

Fig. S10. The fluorescence decay of dye **1a** in toluene excited at 360 nm and measured by single photon counting method whose emission at 435 nm.

Fig. S11. The fluorescence decay of dye **1a** in dichloromethane excited at 360 nm and measured by single photon counting method whose emission at 435 nm.

Fig. S12. The fluorescence decay of dye **1a** in tetrahydrofuran excited at 360 nm and measured by single photon counting method whose emission at 435 nm.

Fig. S13. The fluorescence decay of dye **1a** in acetonitrile excited at 360 nm and measured by single photon counting method whose emission at 435 nm

Fig. S14. The fluorescence decay of dye **1b** in hexane excited at 370 nm and measured by single photon counting method whose emission at 455 nm

Fig. S15. The fluorescence decay of dye **1b** in toluene excited at 370 nm and measured by single photon counting method whose emission at 480 nm

Fig. S16. The fluorescence decay of dye **1b** in dichloromethane excited at 370 nm and measured by single photon counting method whose emission at 480 nm

Fig. S17. The fluorescence decay of dye **1b** in tetrahydrofuran excited at 370 nm and measured by single photon counting method whose emission at 480 nm.

Fig. S18. The fluorescence decay of dye **1b** in acetonitrile excited at 370 nm and measured by single photon counting method whose emission at 480 nm

Fig. S19. The fluorescence decay of dye **1c** in hexane excited at 370 nm and measured by single photon counting method whose emission at 469 nm

Fig. S20. The fluorescence decay of dye **1c** in toluene excited at 370 nm and measured by single photon counting method whose emission at 500 nm

Fig. S21. The fluorescence decay of dye **1c** in dichloromethane excited at 370 nm and measured by single photon counting method whose emission at 500 nm

Fig. S22. The fluorescence decay of dye **1c** in tetrahydrofuran excited at 370 nm and measured by single photon counting method whose emission at 500 nm.

Fig. S23. The fluorescence decay of dye **1c** in acetonitrile excited at 370 nm and measured by single photon counting method whose emission at 500 nm

Fig. S24. The fluorescence decay of dye **1d** in hexane excited at 390 nm and measured by single photon counting method whose emission at 520 nm

Fig. S25. The fluorescence decay of dye **1d** in toluene excited at 390 nm and measured by single photon counting method whose emission at 524 nm

Fig. S26. The fluorescence decay of dye **1d** in dichloromethane excited at 390 nm and measured by single photon counting method whose emission at 540 nm

Fig. S27. The fluorescence decay of dye **1d** in tetrahydrofuran excited at 390 nm and measured by single photon counting method whose emission at 540 nm

Fig. S28. The fluorescence decay of dye **1d** in acetonitrile excited at 390 nm and measured by single photon counting method whose emission at 560 nm

5. Electrochemical spectra for all compounds

Fig. S29. Cyclic voltammograms of 1mM **1a** measured in dichloromethane solution, containing 0.1 M TBAPF₆ as the supporting electrolyte at room temperature. Glassy carbon electrode as a working electrode, and the scan rate at 50 mV s⁻¹.

Fig. S30. Cyclic voltammograms of 1mM **1b** measured in dichloromethane solution, containing 0.1 M TBAPF₆ as the supporting electrolyte at room temperature. Glassy carbon electrode as a working electrode, and the scan rate at 50 mV s⁻¹.

Fig. S31. Cyclic voltammograms of 1mM 1c measured in dichloromethane solution, containing 0.1 M TBAPF₆ as the supporting electrolyte at room temperature. Glassy carbon electrode as a working electrode, and the scan rate at 50 mV s⁻¹.

6. Copies of ¹H and ¹³C NMR spectra

Fig. S32. ¹H NMR spectrum of 1a in CDCl₃ solution

Fig. S33. 13 C NMR spectrum of 1a in CDCl₃ solution

Fig. S34. ¹H NMR spectrum of 1b in CDCl₃ solution

Fig. S35. ¹H NMR spectrum of 1c in CDCl₃ solution

Fig. S36. ¹³C NMR spectrum of c in CDCl₃ solution

Fig. S37. ¹H NMR spectrum of d in CDCl₃ solution

7. High resolution mass spectroscopes for all new compounds

