Electronic Supplementary Information

Reactivity and Catalytic Activity of *tert*-Butoxy-Aluminium Hydride Reagents

Robert J. Less,* Hayley R. Simmonds and Dominic S. Wright*

General Experimental Details of NMR Spectroscopic Studies

NMR spectra were obtained in deuterated NMR solvents (d₆-benzene, d₈-toluene, d₈-thf) which had been dried over a sodium mirror. A Bruker 500 MHz TCI Cryoprobe Spectrometer was used and all spectra are recorded at +25°C. The frequencies of the nuclei and external reference standards are as follows: ¹H – 500.20 MHz, (Me₄Si, CDCl₃, 1%), ¹¹B – 160.48 MHz, (BF₃·Et₂O, CDCl₃), ²⁷AI – 130.35 MHz, (AI(NO₃)₃, D₂O, 1.1M), ⁷Li – 194.40 MHz, (LiCl, D₂O, 9.7M).

In situ NMR spectroscopic studies in THF and toluene were undertaken using Wilmad 528pp tubes fitted with Youngs' tap adaptors, which allowed the attachment of the tube to a vacuum line during the course of reactions. During reactions evolved H₂ gas was therefore allowed to escape from the reaction system. The time intervals at which the spectra were recorded for catalytic studies using 10 mol% of the reagents involved are given on the appropriate spectra. In each case a series of spectra for the corresponding 1:1 reactions accompany the catalytic studies for comparison.

1. NMR Spectra of Aluminium Hydride Precursors 1, 2, 3 and 4

Figure 1.1 ¹H NMR Spectrum of ^tBuOAlH₂ (1) in D₈-THF.

Note: In the original paper (reference 11) the NMR spectra of **1** were obtained in D₆benzene). The observation of two ^tBu resonances in THF here can be tentatively ascribed to the presence of solvated monomer [(^tBuO)AlH₂.THF] (δ 1.50) and *intact* dimer [H₂Al(μ -O^tBu)]₂ (δ 1.30), on the basis of the observed chemical shift in the ¹H NMR spectrum of **1** in D₆-benzene (see below).

Figure 1.2 27 Al (H-coupled) in D₈-THF (the peak at 75 ppm is that for glass).

Figure 1.3 ¹H NMR Spectrum of ^{*t*}BuOAlH₂ (**1**) in D₆-benzene. *Note:* The ¹H NMR spectrum is identical to that reported in reference 11 in the same solvent.

Figure 1.4 ²⁷Al (H-coupled) (the peak at 75 ppm is that for glass).

Figure 1.5 ¹H NMR Spectrum of (THF)Li[(^tBuO)₂AlH₂] (3) in D₈-THF

Figure 1.6 ⁷Li NMR Spectrum of (THF)Li[(${}^{t}BuO$)₂AlH₂] (3) in D₈-THF

Figure 1.7 ²⁷Al NMR Spectrum of $(THF)Li[(^{t}BuO)_{2}AlH_{2}]$ (**3**) in D₈-THF (the peak at 75ppm is that for glass).

Figure 1.8 ¹H NMR Spectrum of $(1,4-dioxane)Li(^{t}BuO)_{2}AlH_{2}$ (4) in D₈-THF.

Figure 1.9 ⁷Li NMR Spectrum of $(1,4-\text{dioxane})\text{Li}(^{t}\text{BuO})_{2}\text{AlH}_{2}$ (4) in D₈-THF.

Figure 1.10 ²⁷Al NMR Spectrum of $(1,4-dioxane)Li(^{t}BuO)_{2}AlH_{2}$ (4) in D₈-THF (the peak at 75ppm is that for glass).

Note: The spectra for **3** and **4** are almost identical in THF, the only difference being that the ¹H spectrum of the latter contains the 1,4-dioxane resonance. The ¹ J_{AI-H} coupling constants for the AlH₄⁻ ion (δ 97 ppm) are also identical to one decimal place and are consistent with the reported Al-H coupling in AlH₄⁻ of 170 – 173 Hz (reference 19 in the paper).

2. NMR Spectra of the Reaction Products 5 and 6

Figure 2.1 ¹H NMR Spectrum of $[(1,4-H-pyrid-1-yl)_4Al]^-[(pyridine)_4AlH_2]^+$ (**5**) in D₈-THF (THF peaks solvent peaks are marked *, vacuum grease *).

Figure 2.2 ²⁷Al NMR (H-decoupled) of $[(1,4-H-pyrid-1-yl)_4Al]^-[(pyridine)_4AlH_2]^+$ (5) in D₈-THF (the peak at 75 ppm is that for glass).

Figure 2.3 ¹H NMR Spectrum of $[(PMDETA)AIH_2]^+[(H_3B)_2(NMe_2)]^-$ (6) in D₈-THF (THF peaks solvent peaks are marked *, vacuum grease *).

Figure 2.4 ¹¹B NMR Spectrum of $[(PMDETA)AIH_2]^+[(H_3B)_2(NMe_2)]^-$ (6) in D₈-THF.

3. In situ 11 B NMR Spectroscopic Studies of Catalytic and Stoichiometric Reactions of 1, 2, 3 and 4 with Me₂NHBH₃.

Figure 3.1 ^tBuOAlH₂ (1) (10 mol% loading) + Me₂NHBH₃ in D₈-THF. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 72 hours and after heating overnight.

Figure 3.2 Comparison of the spectra taken after 48 hours and after heating overnight (taken from Figure 3.1).

Figure 3.3 1 :1 Reaction of ${}^{t}BuOAIH_{2}$ (1) + Me₂NHBH₃ in D₈-THF. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 72 hours and after heating overnight.

Figure 3.4 (${}^{t}BuO$)₂AlH (**2**) + Me₂NHBH₃ (10 mol% loading) in D₈-THF. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 72 hours and after heating overnight.

Figure 3. 5 1 :1 Reaction of (${}^{t}BuO)_{2}AlH$ (2) + Me₂NHBH₃ in D₈-THF. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 72 hours and after heating overnight.

Figure 3.6 $(THF)Li[(^{t}BuO)_{2}AlH_{2}]$ (3) (10 mol% loading) + Me₂NHBH₃ in D₈-THF. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 72 hours, 168 hours and after heating overnight.

Figure 3.7 1 :1 Reaction of $(THF)Li[(^{t}BuO)_{2}AlH_{2}]$ (**3**) (10 mol% loading) + Me₂NHBH₃ in D₈-THF. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 144 hours and after heating overnight.

Figure 3.8 ^tBuOAlH₂ (1) (10 mol% loading) + Me₂NHBH₃ in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 72 hours and after heating overnight.

Figure 3.9 Comparison of the spectra taken after 48 hours and after heating overnight (taken from Figure 3.8).

Figure 3.10 1 :1 Reaction of ${}^{t}BuOAlH_{2}$ (1) + Me₂NHBH₃ in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 24 hours, 48 hours, 72 hours and after heating overnight.

Figure 3.11 (${}^{t}BuO$)₂AlH (**2**) + Me₂NHBH₃ (10 mol% loading) in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 72 hours and after heating overnight.

Notes –

The broad peak at *ca*. δ 22 was assigned on the basis of previous studies to the polymer/oligomer [-BH₂NMe₂-]_n (see K. A. Erickson, D. S. Wright, R. Waterman, *J. Organomet. Chem.*, in press and references therein).

The doublet at $\delta 26.8$ (¹J_{BH} = 128 Hz) was assigned to the assymetric chain product [(^tBuO)(Me₂N)BH] (see P. Belham, M. S. Hill, G. Kociok-Köhn, D. J. Liprot, *Chem. Commun.*, 2013, **49**, 1960). This species results from the nucleophilic addition of a ^tBuO-Al group onto a the B-atom of [Me₂N=BH₂] (see Scheme 5 of the paper).

Figure 3.12 1 :1 Reaction of $({}^{t}BuO)_{2}AIH$ (2) + Me₂NHBH₃ in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 72 hours and after heating overnight.

Figure 3.13 (THF)Li[(^tBuO)₂AlH₂] (**3**) (10 mol% loading) + Me₂NHBH₃ in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 72 hours and after heating overnight (* see notes to Figure 3.11).

Figure 3.14 1 :1 Reaction of $(THF)Li[({}^{t}BuO)_{2}AIH_{2}](3) + Me_{2}NHBH_{3}$ in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 72 hours and after heating overnight.

Figure 3.15 (1,4-dioxane)Li[(${}^{t}BuO$)₂AlH₂] (**4**) (10 mol% loading) + Me₂NHBH₃ in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 72 hours and after heating overnight.

Figure 3.16 1 :1 Reaction of $(1,4-\text{dioxane})\text{Li}[(^t\text{BuO})_2\text{AlH}_2](4) + \text{Me}_2\text{NHBH}_3$ in D₈-toluene. Spectra taken at t = (from bottom to top) 0 hours, 72 hours and after heating overnight (* see notes to Figure 3.11).

4. Study of Recation of (${}^{t}BuO$)AlH₂ with D₅-pyridine

Figure 4.1 ¹H NMR Spectrum of the Reaction of 1 with D5-pyridine. The whole spectrum, showing the change in alkyl region over time. Spectra taken at t = (from bottom to top) 0 mins, 4 mins, 8 mins, 12 mins, 16 mins, 20 mins, 24 mins, 30 mins, 36 mins, 42 mins, 24 hours, 48 hours and after heating overnight.

Figure 5.2 Expansion of the spectrum shown in Figure 5.1 (cropped to show the 3.0 - 9.0 ppm region). Visible is a hydride peak at 5.17 ppm which disappears after longer reaction periods. Also visible are the deuterated pyridine peaks, with the *ortho*-proton appearing furthest downfield and the *meta*-proton appearing furthest upfield. The *ortho*:*para*:*meta* ratio at t=0 is 2:1:2, as expected, and over time an exchange reaction occurs.