Supporting information

to the manuscript

Multiple coupling of silanes with an imido Mo complex

Andrey Y. Khalimon, Nicolas A. McLeod, Stanislav K. Ignatov, Andrey I. Okhapkin, Lyudmila G. Kuzmina, and Georgii I. Nikonov

Contents

I.	Experimental Details	S1
II.	Cartesian coordinates of the stationary points of the reaction of complex $(^{t}BuN)_{2}Mo(PMe_{3})_{2}$ (1) and $H_{3}SiPh$ with <i>B3PW91/6-31G*</i> , <i>Hay-Wadt DZ</i>	
	calculation	.S25
III.	DFT calculations	S52

I. Experimental details

All manipulations were carried out using conventional inert atmosphere glove-box and Schlenk techniques. Dry diethyl ether, toluene, hexanes, and acetonitrile were obtained, using Grubbs-type purification columns, other solvents were dried by distillation from appropriate drying agents. NMR spectra were obtained with a Bruker DPX-300 and Bruker DPX-600 instruments (¹H: 300 and 600 MHz; ¹³C: 75.5 and 151 M

Hz; ²⁹Si: 59.6 and 119.2 MHz; ³¹P: 121.5 and 243 MHz). NMR spectra weretaken at room temperature unless specified. IR spectra were measured on a Perkin-Elmer 1600 FT-IR spectrometer. Elemental analyses were performed in "ANALEST" laboratories (University of Toronto). Preparation of ($^{1}BuN=_{2}Mo(PMe_{3})_{2}$ (1) and ($^{1}BuN=_{2}Mo(PMe_{3})(\eta^{2}-C_{2}H_{4})$ (2) was reported previously.¹ PhSiH₃ and PhSiD₃ were prepared from PhSiCl₃ by treatment with LiAlH₄ or LiAlD₄, respectively. Mechanistic studies were carried outunder nitrogen atmosphere, using NMR tubes equipped with Teflon valves.

Preparation of (^tBuN=){µ-^tBuN(SiHPh)₂}Mo(H)(SiH₂Ph)(PMe₃)₂ (3)

A solution of **1** (300.0 mg, 0.769 mmol) in hexanes (12 mL) was precooled to -30 °C using an acetone/CO₂ bath. PhSiH₃ (0.19 mL, 1.54) was added in one portion and the mixture stirred for 1 h 20 min at -30 °C. After this time the solution was warmed to 0/-5 °C and all volatiles removed in vacuum to give a light brown powder. Yield: 0.38 g, 82 %. Alternatively, a similar procedure using complex **2** with one equivalent of PMe₃ in a hexane/toluene (5:1) mixture can be employed resulting in similar yields and purity.

¹H-NMR (600 MHz; Toluene-d₈; - 28 °C; δ, ppm): 0.62 (s, 9H, *'Bu*N), 0.99 (d, ${}^{2}J_{P-H} = 6.0$ Hz, 9H, PMe₃), 1.04 (d, ${}^{2}J_{P-H} = 7.5$ Hz, 9H, PMe₃), 1.47 (s, 9H, *'Bu*N), 1.54 (bd, 1H, ${}^{2}J_{P-H} = 21.0$ Hz, MoH), 5.13 (bd, 1H, ${}^{2}J_{P-H} = 19.6$ Hz, SiH₂Ph), 5.60 (dd, 1H, ${}^{3}J_{P-H} = 14.9$ Hz, ${}^{2}J_{H-H} = 7.5$ Hz, SiH₂Ph), 6.03 (dd, 1H, ${}^{3}J_{P-H} = 9.6$ Hz, ${}^{3}J_{P-H} = 3.7$ Hz, {(SiHPh)₂(*u*-N^tBu)}), 6.67 (ddd, 1H, ${}^{2}J_{H-H} = 5.9$ Hz, ${}^{3}J_{P-H} = 11.6$ Hz, ${}^{3}J_{P-H} = 17.2$ Hz, {(SiHPh)₂(*u*-N^tBu)}), 7.26 (m, 2H, *p*-H, SiPh), 7.32 (t, 1H, ${}^{3}J_{H-H} = 7.5$ Hz, *p*-H, SiPh), 7.40 (t, 2H, ${}^{3}J_{H-H} = 7.5$ Hz, *m*-H, SiPh), 7.46 (t, 2H, ${}^{3}J_{H-H} = 7.5$ Hz, *m*-H, SiPh), 7.49 (t, 2H, ${}^{3}J_{H-H} = 7.5$ Hz, *m*-H, SiPh), 8.32 (bs, 2H, *o*-H, SiPh), 8.48 (d, 2H, ${}^{3}J_{H-H} = 6.6$ Hz, *o*-H, SiPh), 8.54 (d, 2H, ${}^{3}J_{H-H} = 6.7$ Hz, *o*-H, SiPh).¹H-NMR (600 MHz; Toluene-d₈; 22 °C; δ, ppm): 0.61 (s, 9H, *'Bu*N), 1.05 (d, ${}^{2}J_{P-H} = 6.4$ Hz, PMe₃), 1.14 (d, 9H, ${}^{2}J_{P-H} = 7.7$ Hz, PMe₃), 1.39 (s, 9H, *'Bu*N), 1.50 (bd, 1H, ${}^{2}J_{P-H} = 21.0$ Hz, MoH), 5.05 (d, 1H, ${}^{3}J_{P-H} = 19.4$ Hz, SiH₂Ph), 5.50 (bddd, 1H, ${}^{3}J_{P-H} = 15.9$ Hz, ${}^{2}J_{H-H} = 7.5$ Hz, MoH), 5.05 (d, 1H, ${}^{3}J_{P-H} = 19.4$ Hz, SiH₂Ph), 5.50 (bddd, 1H, ${}^{3}J_{P-H} = 15.9$ Hz, ${}^{2}J_{H-H} = 7.5$ Hz, MoH), 5.05 (d, 1H, ${}^{3}J_{P-H} = 19.4$ Hz, SiH₂Ph), 5.50 (bddd, 1H, ${}^{3}J_{P-H} = 15.9$ Hz, ${}^{2}J_{H-H} = 7.5$ Hz, MoH), 5.05 (d, 1H, ${}^{3}J_{P-H} = 19.4$ Hz, SiH₂Ph), 5.50 (bddd, 1H, ${}^{3}J_{P-H} = 15.9$ Hz, ${}^{2}J_{H-H} = 7.5$ Hz, MoH), 5.05 (d, 1H, ${}^{3}J_{P-H} = 19.4$ Hz, SiH₂Ph), 5.50 (bddd, 1H, ${}^{3}J_{P-H} = 15.9$ Hz, ${}^{2}J_{H-H} = 7.5$ Hz, MoH), 5.05 (d, 1H, ${}^{3}J_{P-H} = 19.4$ Hz, SiH₂Ph), 5.50 (bddd, 1H, ${}^{3}J_{P-H} = 15.9$ Hz, ${}^{2}J_{H-H} = 7.5$ Hz, MoH), 5.05 (d, 1H, ${}^{3}J_{P-H} = 19.4$ Hz, SiH₂Ph), 5.50 (bddd, 1H, ${}^{3}J_{P-H} = 15.9$ Hz, 2

= 7.4 Hz, SiH₂Ph), 6.04 (dd, 1H, ${}^{3}J_{P-H}$ = 3.7 Hz, ${}^{3}J_{P-H}$ = 9.2 Hz, {(SiHPh)₂(u-N^tBu)}), 6.59 $(ddd, 1H_{2}^{2}J_{H-H} = 5.8 \text{ Hz}, {}^{3}J_{P-H} = 11.6 \text{ Hz}, {}^{3}J_{P-H} = 17.5 \text{ Hz}, {(SiHPh)_{2}(u-N^{t}Bu)}), 7.23 \text{ (m, 3H, } p-10.0 \text{ m})$ H, SiPh),7.36 (t, 2H, ${}^{3}J_{H-H}$ = 7.3 Hz, m-H, SiPh),7.40 (t, 4H, ${}^{3}J_{H-H}$ = 7.0 Hz, m-H, SiPh),8.25 (d, 2H, ${}^{3}J_{H-H}$ = 7.0 Hz, o-H, SiPh),8.37 (d, 2H, ${}^{3}J_{H-H}$ = 7.3 Hz, o-H, SiPh),8.39 (d, 2H, ${}^{3}J_{H-H}$ = 7.3 Hz, o-H, SiPh). ¹H{³¹P}-NMR (600 MHz, Toluene- d_8 , 22 °C, δ , ppm, selected signals): 6.59 (d, 1H, ${}^{2}J_{H-H} = 5.9$ Hz, {(SiHPh)₂(u-N^tBu)}), 6.04 (s, 1H, {(SiHPh)₂(u-N^tBu)}), 5.49 (s, 1H, Si H_2 Ph), 5.05 (s, 1H, Si H_2 Ph), 1.55 (d, 1H, ${}^2J_{H-H}$ = 5.9 Hz, MoH). ³¹P{¹H}-NMR (243.0 MHz, Toluene- d_8 , -28 °C, δ , ppm): -40.2 (d, ${}^{2}J_{P-P}$ = 34.5 Hz, PMe₃), -16.3 (d, ${}^{2}J_{P-P}$ = 34.5 Hz, *P*Me₃). ³¹P{¹H}-NMR (121.5 MHz, Toluene- d_8 , 22 °C, δ , ppm): -41.5 (d, ²J_{P-P}= 32.0 Hz, *P*Me₃), -17.2 (d, ${}^{2}J_{P-P}$ = 34.5 Hz, *P*Me₃). ²⁹Si INEPT+ (119.2 MHz, Toluene-*d*₈, -28 °C, *J* = 180 Hz, δ , ppm): -14.3 (tdd, ${}^{1}J_{\text{Si-H}} = 154.4 \text{ Hz}, {}^{2}J_{\text{Si-P}} = 25.0 \text{ Hz}, {}^{2}J_{\text{Si-P}} = 28.6 \text{ Hz}, SiH_2Ph$), -5.0 $(d, {}^{1}J_{Si-H} = 186.0 \text{ Hz}, \{(SiHPh)_{2}(u-N^{t}Bu)\}), 1.4 (ddd, {}^{1}J_{Si-H} = 166.9 \text{ Hz}, {}^{2}J_{Si-P} = 25.0 \text{ Hz}, {}^{2}J_{Si-P}$ = 20.3 Hz, {(SiHPh)₂(u-N^tBu)}). ²⁹Si RF INEPT NMR (119.2 MHz, Toluene- d_8 , -18 °C, J = 180 Hz, δ , ppm): 1.4 (dd, ${}^{2}J_{\text{Si-P}} = 16.7$ Hz, ${}^{2}J_{\text{Si-P}} = 28.6$ Hz, {(*Si*HPh)₂(*u*-N^tBu)}, "up"), -5.1 $(d, {}^{2}J_{Si-P} = 10.7 \text{ Hz}, \{(SiHPh)_{2}(u-N^{t}Bu)\}, "up"), -14.7 (t, {}^{2}J_{Si-P} = 23.8 \text{ Hz}, SiH_{2}Ph, "down").$ ¹H-³¹P HSQC JC NMR (243.0 Hz, Toluene-d₈; -20 °C; J = 15 Hz; ¹H projection; δ , ppm): 1.6 (d, ${}^{2}J_{H-P} = 30.0 \text{ Hz}$, {(SiHPh)₂(u-N^tBu)}). ${}^{13}C{}^{1}H$]-NMR (151 MHz; Toluene-d₈; - 28 °C; δ, ppm): 14.9 (d, ${}^{1}J_{C-P}$ = 18.1 Hz, PMe₃), 19.1 (d, ${}^{1}J_{C-P}$ = 24.1 Hz, PMe₃), 30.3 (s, CH₃, ^tBuN), 31.7 (s, CH₃, ^{*t*}BuN), 34.8 (s, CH₃, ^{*t*}BuN=Mo), 54.7 (s, C(CH₃)₃, N^{*t*}Bu), 127.3 (s, *m*-C, SiPh), 127.5 (s, m-C, SiPh), 128.1 (s, m-C, SiPh), 128.2 (s, p-C, SiPh), 128.4 (s, p-C, SiPh), 133.9 (s, o-C, SiPh), 137.1 (s, o-C, SiPh), 137.8 (s, o-C, SiPh), 143.2 (s, i-C, SiPh), 147.8 (s, i-C, SiPh), 148.8 (s, *i*-C, SiPh). IR (nujol): 1825 cm⁻¹ (medium, Mo-H), 1890 cm⁻¹ (strong, Si-H), 2037 cm⁻¹ (strong, Si-H), 2142 (strong, Si-H). Elem. Anal. (%): calc for C₃₂H₅₆MoN₂P₂Si₃ (710.945) C 54.06, H 7.94, N 3.94; found C 53.99 H 7.87, N 4.22.

²**H-NMR** (600 MHz, Toluene- d_8 , RT, 30 minutes after addition of PhSiD₃)

General Procedure for Addition of Silane

To a solution of (${}^{t}BuN=$)Mo(PMe₃)(L) (L = PMe₃ (1), η^{2} -CH₂CH₂ (2))intoluene-d₈, PMe₃was added in one portion at room temperature. The sample was cooled to -196 °C using liquid nitrogen on a Schlenk line and PhSiH₃was directly added. The sample was quickly removed from the liquid nitrogen and inverted once, then immediately placed back. The sample was then placed into a pre-cooled NMR machine at the appropriate temperature and monitored at various temperatures. In some cases, the sample was allowed to react for 2-4 hours at -40 °C, then monitored by NMR at the appropriate temperature.

$(^{t}BuN=)Mo(\eta^{3}-N^{t}Bu-SiHPh-H)(PMe_{3})_{2}(Et)$ (4)

¹**H-NMR** (600 MHz, Toluene-*d*₈, -53 °C, δ, ppm): -0.82 (s, 1H, Si-H_{agostic}, ¹*J*_{Si-H} = 125.1 Hz, found by ¹H-²⁹Si HSQC 1D JC), 1.03 (s, 9H, 3 CH₃, *'Bu*N=Mo), 1.10 (s, 9H, 3 CH₃, Mo-N*^tBu*-SiH₂Ph), 1.32 (d, 9H, PMe₃, ²*J*_{H-P} = 5.22 Hz), 1.43 (d, 9H, PMe₃, ²*J*_{H-P} = 5.28 Hz), 1.96 (t, 3H, CH₃, Mo-CH₂-CH₃, ³*J*_{H-H} = 7.53 Hz), 2.50 (m, 1H, Mo-CH₂-CH₃), 2.61 (m, 1H, Mo-CH₂-CH₃), 5.66 (s, 1H, Si-*H_{class}*, ¹*J*_{Si-H} = 212.0 Hz, found by ¹H-²⁹Si HSQC 1D JC), 7.27 (m, 2H, *m*-Ph), 7.96 (d, 2H, *o*-Ph, ³*J*_{H-H} = 6.9 Hz).³¹P{¹H}-NMR (243.0 MHz, Toluene-*d*₈, -53 °C, δ, ppm): -7.78 (d, 1P, PMe₃, ²*J*_{P-P} = 291.7 Hz), -10.12 (d, 1P, PMe₃, ²*J*_{P-P} = 291.8 Hz).¹H-

²⁹Si HSQC NMR (119.0 MHZ, Toluene- d_8 ; -53 °C; J = 150 Hz; ²⁹Si projection, δ , ppm): -75.4 (Mo-N'Bu-*Si*H₂Ph).

¹**H-NMR** (600 MHz, Toluene- $d_{8,}$ -53 °C, after 3 hours at -40 °C; **5** – ([†]BuN=)Mo(η^3 -N[†]Bu-SiHPh-H)(PMe_3)₂(SiH₂Ph))

³¹P{¹H}-NMR (243.0 MHz, Toluene- $d_{8,}$ -53 °C, after 3 hours at -40 °C)

 $(^{t}BuN=)Mo(\eta^{3}-N^{t}Bu-SiHPh-H)(PMe_{3})_{2}(SiH_{2}Ph))$

$(^{t}BuN=)Mo(\eta^{3}-N^{t}Bu-SiHPh-H)(PMe_{3})_{2}(SiH_{2}Ph)$ (5)

¹**H-NMR** (600 MHz, Toluene-*d*₈, -78 °C, δ, ppm): 0.17 (s, 1H, Si-H_{agostic}, ¹*J*_{Si-H} = 110.3 Hz, found by ¹H-²⁹Si HSQC 1D JC), 1.00 (s, 9H, 3 CH₃, *'Bu*N=Mo), 1.35 (bs, 18H, 2 P*Me*₃), 1.37 (s, 9H, 3 CH₃, Mo-N*'Bu*-SiH₂Ph), 5.43 (s, 1H, Si-*H_{class}*, ¹*J*_{Si-H} = 226.1 Hz, found by ¹H-²⁹Si HSQC 1D JC), 5.76 (s, 1H, Mo-Si*H*₂Ph), 5.81 (s, 1H, Mo-Si*H*₂Ph), 7.23 (t, 2H, *m*-Ph, Mo-N'BuSiH*Ph*, ³*J*_{H-H} = 7.26 Hz), 7.37 (t, 2H, *m*-Ph, Mo-SiH₂*Ph*,³*J*_{H-H} = 7.23 Hz), 7.84 (d, 2H, *o*-Ph, Mo-N'BuSiH*Ph*, ³*J*_{H-H} = 6.84 Hz), 8.22 (d, 2H, *o*-Ph, Mo-SiH₂*Ph*, ³*J*_{H-H} = 6.98 Hz).³¹P{¹H}-NMR (243.0 MHz, Toluene-*d*₈, -72 °C, δ, ppm): -10.9 (d, 1P, PMe₃, ²*J*_{P-P} = 268.2 Hz), -13.0 (d, 1P, PMe₃, ²*J*_{P-P} = 266.8 Hz).¹H-²⁹Si HSQC NMR (119.0 MHZ, Toluene-*d*₈; -53 °C; *J* = 150 Hz; ²⁹Si projection, δ, ppm): -8.4 (Mo-*Si*H₂Ph), -81.1 (Mo-N*'*Bu-*Si*H₂Ph).

¹**H-NMR** (600 MHz, Toluene- $d_{8,}$ -80 °C; **4** – (^tBuN=)Mo(η^3 -N^tBu-SiHPh-H)(PMe_3)₂(Et))

¹H-²⁹Si HSQC (600 MHz / 119.2 MHz, Toluene- d_8 , -80 °C, 4 – (^tBuN=)Mo(η^3 -N^tBu-SiHPh-H)(PMe_3)₂(Et))

¹H-²⁹Si HSQC 1D JC (600 MHz / 119.2 MHz, -80 °C; *Top* - ¹H-²⁹Si HSQC 1D JC, *Bottom* - ¹H NMR)

³¹**P**{¹**H**}-**NMR** (243.0 MHz, Toluene-*d*₈, -80 °C)

H-EXSY 1D (600 MHz, Toluene-d₈, -80 °C d8 = 100 ms, excitation of the Si-H_{classical} peak @ 5.43 ppm)

*Note: Positive phase response of the Si- $H_{agostic}$ signal at similar intensity indicates an exchange.

$(^{t}BuN=)Mo(H)(\eta^{3}-PhHSi-N(^{t}Bu)-SiHPh-H)(PMe_{3})_{2}$ (6)

¹**H-NMR** (600 MHz, Toluene-*d*₈, -41 °C, δ , ppm): -4.63 (dd, 1H, ²*J*_{H-P} = 54.9 Hz, ²*J*_{H-P} = 19.5 Hz, Mo-*H*, minor isomer), -4.43 (ddd, 1H, ²*J*_{H-P} = 46.1 Hz, ²*J*_{H-P} = 16.7 Hz, ²*J*_{H-H} = 4.4 Hz, Mo-*H*, major isomer), 0.37 (dt, 1H, ²*J*_{H-P} = 45.5 Hz, ²*J*_{H-H} = 4.4 Hz, Si*H*_{agostic}, major isomer), 0.81(d, 9H, ²*J*_{H-P} = 7.3 Hz, P*Me*₃, major isomer), 0.88 (d, 9H, ²*J*_{H-P} = 7.3 Hz, P*Me*₃, major isomer), 1.36 (s, 9H, *'Bu*N=Mo, major isomer), 1.44 (s, 9H, μ -N(*'Bu*), major isomer), 6.84 (bd, 1H, ²*J*_{H-H} = 5.3 Hz,Si*H*_{classical}, major isomer), 6.92 (bs, 1H, Mo-Si*H*Ph, major isomer), 7.22 (bs, 1H, Mo-Si*H*Ph, minor isomer), 7.23 (t, 1H, ³*J*_{H-H} = 7.4 Hz, *p*-H, Mo-SiH*Ph*, major isomer), 7.27 (t, 1H, *p*-H, ³*J*_{H-H} = 7.4 Hz, SiH₂*Ph*, major isomer), 7.36 (t, 1H, ³*J*_{H-H} = 7.1 Hz, *m*-H, Mo-SiH*Ph*, major isomer), 7.43 (t, 2H, *m*-H, SiH₂*Ph*, ³*J*_{H-H} = 7.3 Hz, major isomer), 7.47 (t, 1H, *m*-H, Mo-SiH*Ph*, ³*J*_{H-H} = 6.9 Hz, major isomer), 8.25 (bd, 1H, *o*-H, Mo-SiH*Ph*,

 ${}^{3}J_{\text{H-H}} = 6.2$ Hz, major isomer), 8.39 (bs, 2H, *o*-H, SiH₂*Ph*, ${}^{3}J_{\text{H-H}} = 7.3$ Hz, major isomer), 8.56 (bd, 1H, *o*-H, Mo-SiH*Ph*, ${}^{3}J_{\text{H-H}} = 6.3$ Hz, major isomer). ${}^{31}P\{{}^{1}H\}$ -NMR (243.0 MHz, Toluene-*d*₈, -25 °C, δ , ppm): 2.4 (d, ${}^{2}J_{\text{P-P}} = 43.7$ Hz, PM*e*₃, minor isomer), -0.8 (d, ${}^{2}J_{\text{P-P}} = 43.7$ Hz, PMe₃, major isomer), -5.1 (d, ${}^{2}J_{\text{P-P}} = 43.7$ Hz, PMe₃, minor isomer), -7.0 (d, ${}^{2}J_{\text{P-P}} = 43.7$ Hz, PMe₃, major isomer). ${}^{29}Si$ INEPT+ (119 MHz, Toluene-*d*₈, -40 °C, *J* = 200 Hz, δ , ppm): -19.5 (dd, ${}^{1}J_{\text{H-Si}} = 37.3$ Hz, ${}^{1}J_{\text{H-Si}} = 199.8$ Hz, Si*H*₂Ph, minor isomer), -16.2 (dd, ${}^{1}J_{\text{H-Si}} = 34.9$ Hz, ${}^{1}J_{\text{H-Si}} = 195.6$ Hz, *Si*H₂Ph, major isomer), 5.2 (d, ${}^{1}J_{\text{H-Si}} = 172.3$ Hz, *Si*HPh, major isomer), 7.5 (d, ${}^{1}J_{\text{H-Si}} = 182.7$ Hz, *Si*HPh, minor isomer). ${}^{13}C\{{}^{1}H\}$ -NMR (151 MHz; Toluene-*d*₈; -40 °C; δ , ppm): 19.89 (d, 3C, PMe_3, {}^{1}J_{\text{C-P}} = 23.8 Hz), 22.65 (d, 3C, PMe_3, {}^{1}J_{\text{C-P}} = 24.8 Hz), 31.35 (s, 3C,CH₃, [†]BuN), 31.97 (s, 3C,CH₃, [†]BuN), 54.54 (s, 1C, *C*(CH₃)₃, [†]BuN), 65.70 (s, 1C, *C*(CH₃)₃, [†]BuN), 127-130 (*p*-Ph, *m*-Ph, overlapped by solvent signals, found by ¹H-¹³C HSQC), 134.0 (*o*-Ph, 2C, MoSiH*Ph*), 137.1 (*o*-Ph, 2C, Si*Ph*), 149.2 (*i*-Ph, 1C, Si*Ph*), 151.0 (*i*-Ph, 1C, Si*Ph*).

¹H-NMR (600 MHz, Toluene- d_{8} , -40 °C)

Figure S1 –Variable temperature ¹H-NMR for complex **6** beginning at 233 K and warming to 293 K. The respective peaks are labelled accordingly. De-coalescence is observed for Si-H_{agostic} and Mo-H at approximately 278 K. Coalescence of all Si-H_{classical} signals are observed upon warming to room temperature (* - residual silicon grease peak).

Figure S2–Variable temperature ${}^{31}P{}^{1}H$ -NMR showing de-coalescence at room temperature for complex 6(* - PMe₃ signal for complex 7).

¹**H**-³¹**P HSQC** (600 MHz / 243.0 MHz, Toluene-d₈, -40 °C, J = 15 Hz)

²⁹Si INEPT+ NMR (119.2 MHz, Toluene-d₈, -40 °C)

¹**H**-²⁹Si **HSQC** (600 MHz / 119.2 MHz, Toluene- d_8 , -40 °C, J = 7 Hz)

¹**H**-²⁹Si **HSQC** (600 MHz / 119.2 MHz, Toluene- d_8 , -40 °C, J = 150 Hz)

$(^{t}BuN=)Mo{(SiHPh)_{2}(\mu-N^{t}Bu)}(PMe_{3})_{2}H_{2}(7)$

¹**H-NMR** (600 MHz, Toluene- d_8 , 0 °C, δ , ppm): 0.80 (s, 9H, 3 CH₃, Mo=N^tBu), 1.05 (d, 9H, PMe₃, ${}^{2}J_{H-P} = 7.7$ Hz), 1.10 (d, 9H, PMe₃, ${}^{2}J_{H-P} = 6.7$ Hz), 1.25 (Mo-H, found by ${}^{1}H{}^{-1}H$ COSY and ¹H-²⁹Si HSQC (J = 7 Hz), partially obscured by complex 3) 1.39 (s, 9H, 3 CH₃, Si-N^tBu-Si), 1.48 (Mo-H, found by ¹H-¹H COSY and ¹H-²⁹Si HSQC (J = 7 Hz), partially obscured by complex **3**), 5.92 (ddd, 1H, Si-*H*, ${}^{3}J_{H-H} = 3.8$ Hz, ${}^{3}J_{H-P} = 5.93$ Hz, ${}^{2}J_{H-P} = 11.57$ Hz, ${}^{1}J_{\text{Si-H}} = 169.2$ Hz {found by ${}^{1}\text{H}-{}^{29}\text{Si}$ HSQC 1D JC}), 6.51 (dt, 1H, Si-H, ${}^{3}J_{\text{H-H}} = 6.1$ Hz, ${}^{2}J_{\text{H-P}} = 6.1 \text{ Hz}, {}^{2}J_{\text{H-P}} = 12.2 \text{ Hz}, {}^{1}J_{\text{Si-H}} = 187.1 \text{ Hz} \{\text{found by } {}^{1}\text{H-}{}^{29}\text{Si HSQC 1D JC}\}), 8.33 \text{ (d,}$ 2H, o-Ph, ${}^{3}J_{\text{H-H}} = 6.9 \text{ Hz}$).¹H{³¹P}-NMR (600 MHz, Toluene- d_{8} , 0 °C, δ , ppm, selected signals): 6.51 (d, 1H, Si-H, ${}^{3}J_{H-H} = 6.12$ Hz), 5.92 (bd, 1H, Si-H, ${}^{3}J_{H-H} = 3.7$ Hz), 1.10 (s, PMe₃), 1.05 (s, PMe₃).³¹P{¹H}-NMR (243.0 MHz, Toluene- d_8 , 0 °C, δ , ppm): -9.65 (d, 1P, PMe₃, ${}^{2}J_{P-P} = 31.3$ Hz), -34.60 (d, 1P, PMe₃, ${}^{2}J_{P-P} = 31.1$ Hz).³¹P{¹H}-NMR (selectively decoupled from methyl group at 1.10 ppm in ¹H-NMR, 243.0 MHz, Toluene- d_8 , 0 °C, δ , ppm): -9.63 (bt, 1P, PMe₃, ${}^{2}J_{P-P} = 33.4 \text{ Hz}$), -34.49 (m, 1P, PMe₃, ${}^{3}J_{P-H} = 13.0 \text{ Hz}$, ${}^{2}J_{P-P} = 27.6 \text{ Hz}$ Hz, ${}^{2}J_{P,H} = 51.7$ Hz). ${}^{31}P{}^{1}H{}$ -NMR (selectively decoupled from methyl group at 1.05 ppm in ¹H-NMR, 243.0 MHz, Toluene- d_8 , 0 °C, δ , ppm): -9.63 (dd, 1P, PMe₃, $^2J_{P-P} = 33.4$ Hz, $^2J_{P-H}$ = 33.4 Hz), -34.70 (m, 1P, PMe₃).³¹P{¹H}-NMR (selectively decoupled from hydride at 1.25 ppm in ¹H-NMR, 243.0 MHz, Toluene- d_8 , 0 °C, δ , ppm): -9.63 (d, 1P, PMe₃, ² $J_{P-P} = 33.4$ Hz), -34.60 (m, 1P, PMe₃).²⁹Si INEPT + (119 MHz, Toluene- d_8 , 0 °C, J = 150 Hz, δ , ppm): 4.05 (d, ${}^{1}J_{\text{Si-H}} = 170.0 \text{ Hz}$), -2.17 (d, ${}^{1}J_{\text{Si-H}} = 185.3 \text{ Hz}$).

³¹P{¹H} NMR (243.0 MHz, Toluene- $d_{8,0}$ °C, reacted at -20 °C for 3 hours)

¹**H**-³¹**P HSQC** (600 MHz / 243.0 MHz, Toluene-d₈, 0 °C, J = 15 Hz)

$(^{t}BuN=){\mu^{-t}BuN(SiHPh)_2}Mo(PMe_3)_3(8)$

¹**H-NMR** (600 MHz, Toluene-*d*₈, 0 °C, δ, ppm): 0.90 (d, 9H, PMe₃, ${}^{2}J_{\text{H-P}} = 6.78$ Hz), 1.06 (s, 9H, 3 CH₃, *'Bu*N=Mo), 1.26 (d, 9H, PMe₃, ${}^{2}J_{\text{H-P}} = 6.12$ Hz), 1.45 (s, 9H, 3 CH₃, μ -N*'Bu*), 1.74 (d, 9H, PMe₃, ${}^{2}J_{\text{H-P}} = 6.90$ Hz), 5.36 (ddd, 1H, MoSi*H*Ph, ${}^{1}J_{\text{Si-H}} = 226.1$ Hz, found by ¹H-²⁹Si HSQC 1D JC, ${}^{2}J_{\text{H-P}} = 3.00$ Hz, ${}^{2}J_{\text{H-P}} = 4.98$ Hz, ${}^{2}J_{\text{H-P}} = 7.80$ Hz), 7.05 (bd, 1H, MoSi*H*Ph, ${}^{1}J_{\text{Si-H}} = 226.1$ Hz, found by ¹H-²⁹Si HSQC 1D JC, partially obscured by solvent peaks), 7.29 (t, 2H, *m*-Ph, ${}^{3}J_{\text{H-H}} = 7.47$ Hz), 7.96 (d, 2H, *o*-Ph, ${}^{3}J_{\text{H-H}} = 7.08$ Hz), 8.27 (d, 2H, *o*-Ph, ${}^{3}J_{\text{H-H}} = 6.96$ Hz).¹H{ 31 P}-NMR (600 MHz, Toluene-*d*₈, 0 °C, δ, ppm; selected signals): 0.90 (s, 9H, PMe₃), 1.26 (s, 9H, PMe₃), 1.74 (s, 9H, PMe₃), 5.36 (s, 1H, Mo-Si*H*Ph).³¹P{¹H}-NMR (243.0 MHz, Toluene-*d*₈, 0 °C, δ, ppm): 5.66 (t, 1P, PMe₃, ${}^{2}J_{\text{P-P}} = 22.6$ Hz), -7.48 (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Pcis}} = 18.2$ Hz, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Pcis}} = 18.2$ Hz, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Pcis}} = 18.2$ Hz, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Pcis}} = 18.2$ Hz, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Pcis}} = 18.2$ Hz, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Pcis}} = 18.2$ Hz, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Pcis}} = 18.2$ Hz, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃, ${}^{2}J_{\text{P-Ptrans}} = 7.48$ (dd, 1P, PMe₃,

91.1 Hz), -13.54 (dd, 1P, PMe₃, ${}^{2}J_{P-Pcis} = 27.4$ Hz, ${}^{2}J_{P-Ptrans} = 91.2$ Hz).²⁹Si INEPT+ (119 MHz, Toluene- d_{8} , 0 °C, J = 150 Hz, δ , ppm): 41.70 (bd, ${}^{1}J_{Si-H} = 169.3$ Hz), -10.42 (dddd, Mo-SiHPh, ${}^{1}J_{Si-H} = 152.0$ Hz, ${}^{2}J_{Si-P} = 19.3$ Hz, ${}^{2}J_{Si-P} = 19.3$ Hz, ${}^{2}J_{Si-P} = 38.3$ Hz).

¹**H-NMR** (600 MHz, Toluene-*d*₈, 0 °C; after 3 days at -30 °C. *Note*: Si-H peak at 7.053 ppm (bd) is partially obscured by solvent peaks)

¹H{³¹P}-NMR(600 MHz, Toluene- $d_{8,0}$ °C; after 3 days at -30 °C)

¹H-³¹P HSQC(600 MHz / 243.0 MHz, Toluene-d₈, 0 °C, J = 15 Hz,after 3 days at -30 °C. *Note:* Artifacts shown for cross peaks @ -14 ppm on vertical scale)

²⁹Si INEPT+ NMR (119.2 MHz, Toluene-d₈, 0 °C, J = 200 Hz, after 3 days at -30 °C)

¹H-²⁹Si HSQC (600 MHz / 119.2 MHz, Toluene- d_8 , 0 °C, J = 150 Hz, after 3 days at -30 °C)

II. Cartesian coordinates of various compounds and stationary points in the

reaction of (^tBuN)₂Mo(PMe₃)₂ (1) with PhSiH₃ with B3PW91/6-31G**, Hay-Wadt DZ

calculation

Center	Atomic	Atomic	C	oordinates (Angstron	 1s)
Number	Number	Туре	Х	Y	Z
1	42	0	-0.000001	0.165013	0.000001
2	15	0	-0.101047	-1.403536	1.833922
3	15	0	0.101234	-1.403896	-1.833611
4	7	0	1.65236	0.874875	0.050258
5	7	0	-1.65261	0.874498	-0.050431
6	6	0	2.840679	1.68113	0.087896
7	6	0	3.550047	1.589579	-1.275139
8	1	0	3.817697	0.551276	-1.496214
9	1	0	4.466307	2.191477	-1.282426
10	1	0	2.89	1.952353	-2.068902
11	6	0	3.777176	1.154519	1.191009
12	1	0	3.27998	1.204777	2.164964
13	1	0	4.697025	1.74864	1.24387
14	1	0	4.04889	0.112559	0.99462
15	6	0	2.47449	3.147133	0.382146
16	1	0	1.95091	3.218979	1.340412
17	1	0	1.812486	3.536508	-0.39698
18	1	0	3.370818	3.777521	0.426685
19	6	0	-2.840787	1.680953	-0.088183
20	6	0	-3.776965	1.154912	-1.191837
21	1	0	-4.048629	0.112813	-0.99613
22	1	0	-3.279551	1.205803	-2.165655
23	1	0	-4.69685	1.748983	-1.244561
24	6	0	-2.474299	3.14702	-0.381745
25	1	0	-1.812678	3.536075	0.397866
26	1	0	-3.370539	3.777511	-0.426557
27	1	0	-1.950204	3.219109	-1.339707
28	6	0	-3.550658	1.58897	1.274566
29	1	0	-4.466744	2.191132	1.281855

30	1	0	-2.890747	1.951158	2.068711
31	6	0	-0.60349	-0.670111	3.456687
32	1	0	-0.597863	-1.408636	4.266502
33	1	0	-1.606285	-0.247241	3.356579
34	1	0	0.081983	0.145651	3.70105
35	6	0	1.514582	-2.172079	2.273953
36	1	0	1.42522	-2.798085	3.168342
37	1	0	2.243307	-1.378574	2.451554
38	1	0	1.871153	-2.778325	1.438569
39	6	0	-1.224688	-2.872553	1.788494
40	1	0	-1.195588	-3.4342	2.729077
41	1	0	-0.932215	-3.532262	0.967421
42	1	0	-2.247654	-2.532539	1.605921
43	6	0	1.224082	-2.873538	-1.788045
44	1	0	1.194213	-3.4355	-2.728415
45	1	0	0.93165	-3.5328	-0.966602
46	1	0	2.247336	-2.534036	-1.606101
47	6	0	0.604395	-0.670826	-3.456329
48	1	0	0.599015	-1.409568	-4.265948
49	1	0	1.607162	-0.247965	-3.355987
50	1	0	-0.080977	0.144881	-3.701149
51	6	0	-1.514692	-2.171688	-2.273926
52	1	0	-1.4255	-2.797684	-3.168336
53	1	0	-2.243034	-1.377829	-2.451524
54	1	0	-1.871652	-2.777821	-1.438628
55	1	0	-3.818692	0.550642	1.495065

Е	-1414.729977
Sigma	2
Nneg	0
E+ZPE	-1414.24565
U	-1414.214903
Н	-1414.213958
G	-1414.307117

Center	Atomic	Atomic	С	coordinates (Angstron	ns)
Number	Number	Туре	Х	Y	Ζ
1	42	0	-0.351847	-0.704273	-0.136451
2	15	0	-0.87908	-1.515448	2.445062
3	15	0	0.496696	-3.077997	-0.643518
4	14	0	-2.731619	-1.691938	-0.368059
5	14	0	2.110045	-0.422989	0.768775
6	14	0	0.251537	1.437479	1.156953
7	7	0	1.96568	1.191928	1.460746
8	7	0	-0.411188	-0.024706	-1.747173
9	6	0	2.953105	2.001053	2.213653
10	6	0	3.860148	1.076084	3.035832
11	1	0	3.273813	0.468847	3.732644
12	1	0	4.581455	1.663317	3.614714
13	1	0	4.427091	0.399342	2.38775
14	6	0	2.221452	2.956133	3.164389
15	1	0	1.558799	3.632954	2.614449
16	1	0	2.941316	3.57101	3.715405
17	1	0	1.617702	2.404952	3.892663
18	6	0	3.821251	2.819606	1.244222
19	1	0	3.209228	3.537724	0.691369
20	1	0	4.319167	2.163539	0.524363
21	1	0	4.591469	3.380071	1.787657
22	6	0	-0.72212	0.553355	-3.037699
23	6	0	0.54251	1.192153	-3.629991
24	1	0	1.338344	0.449877	-3.73676
25	1	0	0.895799	2.005767	-2.992213
26	1	0	0.319673	1.604184	-4.619995
27	6	0	-1.816296	1.616282	-2.850574
28	1	0	-2.727499	1.163889	-2.451201
29	1	0	-2.05067	2.075751	-3.817004
30	1	0	-1.482855	2.397251	-2.163947
31	6	0	-1.231651	-0.555119	-3.974431
32	1	0	-0.443979	-1.283258	-4.188021
33	1	0	-1.547427	-0.113458	-4.925535
34	1	0	-2.0832	-1.077245	-3.531728
35	6	0	-4.294279	-0.606478	-0.182825

36	6	0	-5.55349	-1.233331	-0.212389
37	1	0	-5.61131	-2.314943	-0.321986
38	6	0	-6.735128	-0.503223	-0.102622
39	1	0	-7.693905	-1.015692	-0.127162
40	6	0	-6.687658	0.883973	0.040243
41	1	0	-7.607493	1.456888	0.126227
42	6	0	-5.453113	1.527805	0.073957
43	1	0	-5.404889	2.608422	0.184722
44	6	0	-4.274029	0.787602	-0.033584
45	1	0	-3.318164	1.305239	0.000297
46	6	0	3.580419	-0.569202	-0.440772
47	6	0	4.66842	-1.409015	-0.148038
48	1	0	4.675151	-1.966142	0.787901
49	6	0	5.752961	-1.533096	-1.018595
50	1	0	6.581434	-2.189908	-0.764389
51	6	0	5.777601	-0.80646	-2.207103
52	1	0	6.621087	-0.896951	-2.886599
53	6	0	4.714518	0.043651	-2.516542
54	1	0	4.730226	0.619633	-3.43878
55	6	0	3.63282	0.153993	-1.644484
56	1	0	2.809807	0.815615	-1.900081
57	6	0	-0.128907	3.073196	0.271747
58	6	0	0.728178	3.625038	-0.693323
59	1	0	1.653563	3.109713	-0.940059
60	6	0	0.425143	4.826267	-1.333943
61	1	0	1.109972	5.236154	-2.072449
62	6	0	-0.755333	5.50263	-1.025952
63	1	0	-0.995692	6.43815	-1.524299
64	6	0	-1.62107	4.975357	-0.06834
65	1	0	-2.538355	5.501614	0.18424
66	6	0	-1.304548	3.7785	0.574572
67	1	0	-1.980805	3.390102	1.334381
68	6	0	-2.430358	-0.756973	3.083153
69	1	0	-2.616834	-1.069339	4.115864
70	1	0	-3.278398	-1.045452	2.457737
71	1	0	-2.33153	0.330152	3.044212
72	6	0	0.290334	-1.121789	3.81804
73	1	0	-0.141511	-1.413483	4.781065
74	1	0	0.501824	-0.050638	3.825455
75	1	0	1.232841	-1.652424	3.666379
76	6	0	-1.192292	-3.300047	2.813592

77	1	0	-1.489417	-3.418723	3.860633
78	1	0	-0.290631	-3.892299	2.642077
79	1	0	-1.993416	-3.673706	2.172528
80	6	0	1.795925	-3.916949	0.361138
81	1	0	1.980509	-4.9195	-0.038439
82	1	0	1.499165	-3.998915	1.40828
83	1	0	2.720201	-3.338523	0.313846
84	6	0	1.319315	-3.043528	-2.289627
85	1	0	1.750233	-4.022495	-2.525092
86	1	0	2.106971	-2.286605	-2.285332
87	1	0	0.582278	-2.780081	-3.049944
88	6	0	-0.693847	-4.468353	-0.867165
89	1	0	-0.181947	-5.345633	-1.276183
90	1	0	-1.49526	-4.164843	-1.54469
91	1	0	-1.14503	-4.734587	0.091146
92	1	0	-3.078564	-2.870732	0.506618
93	1	0	-2.903775	-2.308438	-1.732823
94	1	0	2.54564	-1.408027	1.824737
95	1	0	-0.495422	1.615177	2.452459
96	1	0	-1.574226	0.286884	0.519074

Е	-2980.838033
Sigma	1
Nneg	0
E+ZPE	-2980.031468
U	-2979.979482
Н	-2979.978538
G	-2980.117882

TS(1-4H)

Center	Atomic	Atomic		Coordinates (Angst	troms)	
Number	Number	Туре	Х	Y	Z	
1	42	0	0.609028	0.094666	0.000632	
2	15	0	2.133560	0.568195	-1.836375	
			20			

3	15	0	0.394268	-2.402353	-0.372731
4	14	0	-2.031164	0.362737	-1.659943
5	7	0	-0.656147	1.455858	-0.032649
6	7	0	1.716110	-0.067670	1.366649
7	6	0	-0.950347	2.771754	0.521548
8	6	0	-0.428237	3.823865	-0.477329
9	1	0	0.652914	3.716241	-0.607938
10	1	0	-0.633107	4.837735	-0.113718
11	1	0	-0.909787	3.703795	-1.452190
12	6	0	-0.251825	2.978505	1.874191
13	1	0	-0.588599	2.225001	2.593559
14	1	0	-0.470468	3.972041	2.285090
15	1	0	0.830601	2.875487	1.760189
16	6	0	-2.462746	2.989778	0.710930
17	1	0	-2.878361	2.280431	1.430173
18	1	0	-3.003858	2.871855	-0.231664
19	1	0	-2.649157	4.003064	1.085072
20	6	0	2.711910	-0.185343	2.402794
21	6	0	2.901870	1.177156	3.090180
22	1	0	1.962198	1.517290	3.532615
23	1	0	3.229819	1.928567	2.365647
24	1	0	3.655757	1.107223	3.882594
25	6	0	4.050856	-0.645517	1.800531
26	1	0	3.940903	-1.612589	1.301884
27	1	0	4.814503	-0.744007	2.580415
28	1	0	4.408680	0.081168	1.064878
29	6	0	2.222112	-1.215328	3.435594
30	1	0	1.258565	-0.906422	3.850601
31	1	0	2.942338	-1.311761	4.255769
32	1	0	2.095002	-2.198402	2.972271
33	6	0	-3.349908	-0.145477	-0.391620
34	6	0	-4.639672	-0.385520	-0.896485
35	1	0	-4.825722	-0.270017	-1.962196
36	6	0	-5.687058	-0.779105	-0.063870
37	1	0	-6.676921	-0.947096	-0.481040
38	6	0	-5.460083	-0.970121	1.297779
39	1	0	-6.270588	-1.288048	1.948829
40	6	0	-4.184094	-0.755478	1.817915
41	1	0	-3.996471	-0.906524	2.878409
42	6	0	-3.146500	-0.340478	0.982903
43	1	0	-2.157378	-0.159931	1.395590

44	6	0	3.300123	1.964202	-1.503584
45	1	0	3.935788	2.178907	-2.369782
46	1	0	3.930294	1.712813	-0.647021
47	1	0	2.723530	2.855716	-1.246558
48	6	0	1.324001	1.140934	-3.388287
49	1	0	2.069556	1.470716	-4.119495
50	1	0	0.730026	0.329411	-3.815187
51	6	0	3.324835	-0.690782	-2.481435
52	1	0	3.991018	-0.261219	-3.237956
53	1	0	2.771913	-1.523456	-2.923877
54	1	0	3.927007	-1.075339	-1.654032
55	6	0	-0.699030	-3.228151	0.866502
56	1	0	-0.762302	-4.310128	0.704060
57	1	0	-1.699172	-2.790985	0.806539
58	1	0	-0.307010	-3.032763	1.868305
59	6	0	1.906333	-3.456941	-0.218972
60	1	0	1.654628	-4.519657	-0.303548
61	1	0	2.372262	-3.279401	0.752739
62	1	0	2.626466	-3.196228	-0.997630
63	6	0	-0.323477	-3.052261	-1.945441
64	1	0	-0.393515	-4.144463	-1.913142
65	1	0	0.305874	-2.757136	-2.789221
66	1	0	-1.320464	-2.636177	-2.107570
67	1	0	-2.001857	1.746573	-2.205201
68	1	0	-2.657210	-0.363220	-2.856489
69	1	0	0.649745	1.967935	-3.154889
70	1	0	-0.711871	-0.380409	-1.716679

Е	-1937.506125
Sigma	-153
Nneg	0
E+ZPE	-1936.905075
U	-1936.866883
Н	-1936.865939
G	-1936.976713

Structure 4Ha

Center	Atomic	Atomic		Coordinates (Angs	troms)
Number	Number	Туре	Х	Y	Ζ
	 Д?		-0 918413	0.048663	
2	15	0	0.061505	2.344177	-0.674976
2	15	0	-1.791432	-2.271871	-0.857249
4	13	0	1.894406	-1.222103	-0.284513
5	7	0	0.753126	-0.648200	0.832910
6	7	0	-2.528221	0.665663	-0.096408
7	6	0	0.767604	-0.765789	2.293420
8	6	0	-0.544246	-1.403492	2.779013
9	1	0	-1.405328	-0.835280	2.408419
10	1	0	-0.593248	-1.429910	3.874100
11	1	0	-0.634528	-2.426996	2.406228
12	6	0	0.886785	0.629325	2.931673
13	1	0	1.844223	1.091623	2.672185
14	1	0	0.822484	0.576373	4.025081
15	1	0	0.084288	1.278056	2.566756
16	6	0	1.937506	-1.636471	2.778957
17	1	0	2.900840	-1.204874	2.485355
18	1	0	1.871004	-2.646779	2.359804
19	1	0	1.934853	-1.727566	3.871123
20	6	0	-3.760592	1.132847	0.488438
21	6	0	-4.672892	1.667576	-0.628812
22	1	0	-4.877184	0.884051	-1.363935
23	1	0	-4.195480	2.501243	-1.150932
24	1	0	-5.626186	2.015914	-0.215920
25	6	0	-3.454436	2.249448	1.502200
26	1	0	-2.823016	1.869335	2.310404
27	1	0	-4.382597	2.636057	1.937843
28	1	0	-2.931574	3.080084	1.020287
29	6	0	-4.457539	-0.027349	1.220890
30	1	0	-4.704021	-0.835726	0.527429
31	1	0	-5.388324	0.319721	1.683001
32	1	0 0	-3.810490	-0.430649	2.004924
33	6	0 0	3.660437	-0.532122	-0.294568
34	6	0	4.663283	-1.233705	-0.982841
35	1	0	4.419234	-2.172569	-1.477712

36	6	0	5.972387	-0.758030	-1.039152
37	1	0	6.731321	-1.317062	-1.580854
38	6	0	6.309746	0.431037	-0.392795
39	1	0	7.330955	0.801385	-0.429839
40	6	0	5.333397	1.138334	0.307336
41	1	0	5.592821	2.060975	0.820651
42	6	0	4.024321	0.658734	0.351504
43	1	0	3.269010	1.213342	0.903216
44	6	0	1.490904	2.356494	-1.841629
45	1	0	1.788357	3.382541	-2.083538
46	1	0	1.198483	1.834585	-2.756124
47	1	0	2.346401	1.832854	-1.408858
48	6	0	0.671496	3.519883	0.624620
49	1	0	1.027300	4.457431	0.183400
50	1	0	-0.137753	3.740813	1.326342
51	6	0	-1.116202	3.433534	-1.582701
52	1	0	-0.638948	4.372121	-1.884230
53	1	0	-1.976961	3.657929	-0.948725
54	1	0	-1.474717	2.899213	-2.465264
55	6	0	-3.273518	-2.166666	-1.950036
56	1	0	-3.596304	-3.160441	-2.278910
57	1	0	-3.019948	-1.552421	-2.816805
58	1	0	-4.094369	-1.678536	-1.421146
59	6	0	-2.353318	-3.565822	0.349402
60	1	0	-2.797219	-4.425574	-0.164559
61	1	0	-3.091350	-3.138666	1.033606
62	1	0	-1.502099	-3.911912	0.941170
63	6	0	-0.680249	-3.287764	-1.925850
64	1	0	-1.192513	-4.194099	-2.265730
65	1	0	0.221255	-3.570001	-1.377463
66	1	0	-0.380478	-2.691890	-2.791511
67	1	0	2.123222	-2.706155	-0.395965
68	1	0	1.200166	-0.825193	-1.572650
69	1	0	1.486632	3.059495	1.187559
70	1	0	-0.921238	0.135875	-2.068089

E -1 Sigma

-1937.541093 1

Nneg	0
E+ZPE	-1936.939877
U	-1936.901250
Н	-1936.900306
G	-1937.011138

Structure 4Hb

Center	Atomic	Atomic	Co	oordinates (Angstron	ns)
Number	Number	Туре	Х	Y	Z
1	42	0	-0.618197	0.056738	0.2761
2	15	0	-2.462728	0.919222	-1.113701
3	15	0	-1.979047	-1.201534	1.887671
4	14	0	1.733946	0.731223	1.24526
5	7	0	0.793858	1.678392	0.207868
6	7	0	-0.240526	-1.254774	-0.884571
7	6	0	0.891377	3.131084	0.034174
8	6	0	0.050098	3.857678	1.095391
9	1	0	-0.976011	3.480571	1.086272
10	1	0	0.039563	4.942521	0.932635
11	1	0	0.454739	3.666132	2.09523
12	6	0	0.416214	3.518877	-1.369762
13	1	0	0.997917	2.983367	-2.127226
14	1	0	0.524302	4.595896	-1.542213
15	1	0	-0.635028	3.260486	-1.504751
16	6	0	2.359139	3.575421	0.172008
17	1	0	2.990832	3.063267	-0.561213
18	1	0	2.744425	3.349929	1.174325
19	1	0	2.463765	4.655897	0.019687
20	6	0	-0.138942	-2.385838	-1.769573
21	6	0	0.659191	-3.480215	-1.035761
22	1	0	0.112605	-3.839475	-0.160218
23	1	0	1.623457	-3.085025	-0.705214
24	1	0	0.838355	-4.329196	-1.704979
25	6	0	0.640204	-1.959511	-3.028799
26	1	0	0.130059	-1.138968	-3.541838

27	1	0	0.734996	-2.798425	-3.727856
28	1	0	1.641932	-1.61925	-2.754602
29	6	0	-1.520254	-2.924061	-2.173488
30	1	0	-2.113108	-3.169629	-1.287963
31	1	0	-1.421779	-3.827322	-2.786089
32	1	0	-2.069282	-2.180782	-2.759805
33	6	0	3.285712	-0.089504	0.580069
34	6	0	4.248775	-0.640094	1.438014
35	1	0	4.10323	-0.59304	2.516156
36	6	0	5.400985	-1.241912	0.932198
37	1	0	6.137452	-1.664282	1.61119
38	6	0	5.61054	-1.293597	-0.445335
39	1	0	6.510029	-1.757741	-0.841722
40	6	0	4.667443	-0.741903	-1.313778
41	1	0	4.833807	-0.774286	-2.387744
42	6	0	3.514871	-0.147747	-0.803223
43	1	0	2.775282	0.285054	-1.472745
44	6	0	-2.060333	1.180506	-2.899871
45	1	0	-2.888992	1.662815	-3.429582
46	1	0	-1.866088	0.207163	-3.357474
47	1	0	-1.158623	1.785735	-3.001752
48	6	0	-3.25127	2.518047	-0.643816
49	1	0	-4.059736	2.770127	-1.338272
50	1	0	-3.652481	2.418748	0.367534
51	6	0	-4.000853	-0.093455	-1.319678
52	1	0	-4.603609	0.289123	-2.150446
53	1	0	-4.597889	-0.043495	-0.407601
54	1	0	-3.741813	-1.136433	-1.510955
55	6	0	-1.440761	-0.84232	3.617348
56	1	0	-2.021749	-1.420874	4.34372
57	1	0	-1.564782	0.225731	3.809628
58	1	0	-0.380557	-1.085627	3.726407
59	6	0	-1.866154	-3.050394	1.906717
60	1	0	-2.411456	-3.480642	2.753513
61	1	0	-0.813807	-3.337562	1.976278
62	1	0	-2.269947	-3.461017	0.977938
63	6	0	-3.80573	-0.991192	2.082877
64	1	0	-4.154719	-1.457775	3.010081
65	1	0	-4.326847	-1.455032	1.242511
66	1	0	-4.044958	0.074965	2.107896
67	1	0	2.042929	1.185594	2.638246

68	1	0	0.667173	-0.401924	1.616573
69	1	0	-2.519498	3.326572	-0.633394
70	1	0	-1.593289	1.078127	1.453097

Е	-1937.537683
Sigma	1
Nneg	0
E+ZPE	-1936.935398
U	-1936.897828
Н	-1936.896884
G	-1937.003631

TS (4-9)

	·	·		1	·····
Center	Atomic	Atomic	Co	oordinates (Angstrom	ns) _
Number	Number	Туре	Х	Y	Z
	42	0	0.002(17	0.011021	0.25(907
1	42	0	0.60261/	0.011821	-0.256807
2	15	0	2.746321	1.14898	0.066033
3	15	0	1.42627	-2.127294	-1.360313
4	14	0	-1.577289	0.785578	-1.236419
5	7	0	-0.648708	1.787253	-0.249287
6	7	0	0.338355	-0.893177	1.257468
7	6	0	-0.76746	3.211536	0.049371
8	6	0	-0.398441	4.066624	-1.17596
9	1	0	0.609554	3.830365	-1.526188
10	1	0	-0.448987	5.139797	-0.953805
11	1	0	-1.087912	3.860201	-2.001833
12	6	0	0.11594	3.582439	1.243971
13	1	0	-0.123012	2.941371	2.098369
14	1	0	-0.030723	4.628605	1.535519
15	1	0	1.172393	3.446984	1.007921
16	6	0	-2.226577	3.524007	0.432181
17	1	0	-2.530134	2.93794	1.304974
18	1	0	-2.906042	3.277856	-0.392107

19	1	0	-2.357912	4.587316	0.6667
20	6	0	0.260062	-1.676039	2.461775
21	6	0	-1.023302	-2.525376	2.445383
22	1	0	-1.011173	-3.239739	1.617997
23	1	0	-1.903191	-1.889981	2.321988
24	1	0	-1.122476	-3.085844	3.381989
25	6	0	0.199425	-0.696169	3.65059
26	1	0	1.109565	-0.09153	3.697784
27	1	0	0.093648	-1.239984	4.596495
28	1	0	-0.651409	-0.018568	3.538811
29	6	0	1.486311	-2.590629	2.615566
30	1	0	1.510115	-3.341155	1.820086
31	1	0	1.461585	-3.118589	3.575649
32	1	0	2.41044	-2.005566	2.567709
33	6	0	-3.181658	-0.001205	-0.647851
34	6	0	-4.104695	-0.492427	-1.583925
35	1	0	-3.884292	-0.41655	-2.647699
36	6	0	-5.310403	-1.064783	-1.177671
37	1	0	-6.01104	-1.440381	-1.919426
38	6	0	-5.620189	-1.143736	0.17886
39	1	0	-6.561782	-1.58235	0.499105
40	6	0	-4.719451	-0.650039	1.124819
41	1	0	-4.962402	-0.701126	2.183488
42	6	0	-3.511957	-0.091193	0.713802
43	1	0	-2.809934	0.290126	1.451274
44	6	0	3.180644	1.572449	1.813521
45	1	0	4.160121	2.059272	1.874419
46	1	0	3.205809	0.646675	2.394042
47	1	0	2.421488	2.223227	2.249038
48	6	0	3.173574	2.69752	-0.84321
49	1	0	4.208721	2.988211	-0.634856
50	1	0	3.056292	2.515587	-1.914466
51	6	0	4.255352	0.167433	-0.359793
52	1	0	5.169344	0.722761	-0.120606
53	1	0	4.247729	-0.064705	-1.427917
54	1	0	4.250286	-0.769869	0.200874
55	6	0	1.611436	-2.028788	-3.194574
56	1	0	1.84605	-3.010281	-3.618621
57	1	0	2.407032	-1.32444	-3.449839
58	1	0	0.681656	-1.660969	-3.635831
59	6	0	0.174496	-3.478685	-1.22386

60	1	0	0.43354	-4.337139	-1.853253
61	1	0	-0.803019	-3.08764	-1.516479
62	1	0	0.105426	-3.80686	-0.184467
63	6	0	2.961952	-3.081121	-0.944831
64	1	0	2.952489	-4.063567	-1.429252
65	1	0	3.038609	-3.219405	0.135792
66	1	0	3.84311	-2.532749	-1.284774
67	1	0	-1.845303	1.172536	-2.663574
68	1	0	0.051549	-0.015879	-1.986446
69	1	0	2.511564	3.516833	-0.563259
70	1	0	1.117995	0.3899	-2.011618

Е	-1937.512266
Sigma	1
Nneg	-975
E+ZPE	-1936.912314
U	-1936.874795
Н	-1936.873851
G	-1936.980224

Center	Atomic	Atomic	С	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ	
1	42	0	-0.648183	-0.129963	0.04377	
2	15	0	-2.690113	0.571319	-1.25472	
3	15	0	-1.668056	-0.541881	2.197296	
4	14	0	1.477386	0.613481	1.006834	
5	7	0	0.491668	1.58955	-0.04082	
6	7	0	-0.458697	-1.780384	-0.54645	
7	6	0	0.589865	2.994185	-0.441258	
8	6	0	0.084094	3.878682	0.712832	

9	1	0	-0.966459	3.657837	0.929938
10	1	0	0.171116	4.944081	0.467596
11	1	0	0.665819	3.688683	1.620653
12	6	0	-0.246679	3.267166	-1.691928
13	1	0	0.071207	2.613999	-2.510771
14	1	0	-0.141697	4.308826	-2.015425
15	1	0	-1.305803	3.083844	-1.494282
16	6	0	2.051789	3.361205	-0.744082
17	1	0	2.44763	2.742069	-1.554619
18	1	0	2.683653	3.201503	0.135642
19	1	0	2.138645	4.4135	-1.039276
20	6	0	0.081034	-2.967694	-1.164918
21	6	0	1.283287	-3.453004	-0.338599
22	1	0	0.974619	-3.679419	0.686039
23	1	0	2.053897	-2.679293	-0.297397
24	1	0	1.712158	-4.359118	-0.781761
25	6	0	0.525572	-2.64132	-2.600018
26	1	0	-0.316518	-2.260762	-3.186502
27	1	0	0.91678	-3.536269	-3.096706
28	1	0	1.310694	-1.880566	-2.588523
29	6	0	-1.012488	-4.049737	-1.186935
30	1	0	-1.358936	-4.265935	-0.171876
31	1	0	-0.625891	-4.976203	-1.62549
32	1	0	-1.872175	-3.722994	-1.780211
33	6	0	3.223888	0.189105	0.417759
34	6	0	4.274175	0.071632	1.342281
35	1	0	4.084706	0.271842	2.395852
36	6	0	5.561338	-0.284758	0.939894
37	1	0	6.3572	-0.366639	1.676538
38	6	0	5.829468	-0.527491	-0.406387
39	1	0	6.832294	-0.801297	-0.724125
40	6	0	4.801878	-0.413679	-1.344108
41	1	0	5.004722	-0.597213	-2.396755
42	6	0	3.516956	-0.065577	-0.933018
43	1	0	2.7232	0.023341	-1.672221
44	6	0	-2.608492	0.970548	-3.066357
45	1	0	-3.610133	1.064498	-3.500567
46	1	0	-2.075378	0.162649	-3.575836
47	1	0	-2.056905	1.89636	-3.235415
48	6	0	-3.828984	1.90292	-0.655916
49	1	0	-4.706675	1.998701	-1.304466

50	1	0	-3.308512	2.863006	-0.621774
51	1	0	-4.162021	1.663494	0.357802
52	6	0	-3.866618	-0.851833	-1.352649
53	1	0	-4.736688	-0.603807	-1.970731
54	1	0	-4.20116	-1.13166	-0.352285
55	1	0	-3.345079	-1.708312	-1.78538
56	6	0	-1.610607	0.951634	3.275724
57	1	0	-1.968637	0.716255	4.283469
58	1	0	-2.232998	1.742135	2.849774
59	1	0	-0.581125	1.313399	3.327812
60	6	0	-0.797718	-1.804741	3.220553
61	1	0	-1.272318	-1.929889	4.200077
62	1	0	0.242475	-1.497002	3.345111
63	1	0	-0.806339	-2.758617	2.687427
64	6	0	-3.420831	-1.094565	2.438973
65	1	0	-3.65781	-1.225633	3.500715
66	1	0	-3.575898	-2.046635	1.923579
67	1	0	-4.104329	-0.355952	2.011882
68	1	0	1.695105	1.181097	2.389631

E	-1936.360867
Sigma	1
Nneg	0
E+ZPE	-1935.774487
U	-1935.737089
Н	-1935.736145
G	-1935.843996

Center Number	Atomic Number	Atomic Type	C X	Coordinates (Angstrom Y	ns) Z
1	42	0	-1.047159	-0.62973	0.032887
2	15	0	-1.772625	-1.209362	2.325629
3	15	0	-0.817273	-2.849448	-1.040935
4	14	0	1.99384	-0.628751	1.010538

5	14	0	0.041905	1.500993	0.862458
6	7	0	1.750608	1.059775	1.231623
7	7	0	-2.491289	0.055738	-0.666786
8	6	0	2.845198	1.9919	1.632001
9	6	0	3.924521	1.238853	2.422709
10	1	0	3.512288	0.78835	3.331132
11	1	0	4.722838	1.928933	2.715417
12	1	0	4.391416	0.44639	1.824463
13	6	0	2.286843	3.104341	2.526857
14	1	0	1.547722	3.710562	1.996475
15	1	0	3.097484	3.769648	2.843854
16	1	0	1.810522	2.688604	3.42012
17	6	0	3.486206	2.614961	0.381548
18	1	0	2.73819	3.152988	-0.205858
19	1	0	3.927491	1.840026	-0.253246
20	1	0	4.27872	3.319864	0.660251
21	6	0	-3.627296	0.682862	-1.292858
22	6	0	-3.276105	0.972465	-2.762184
23	1	0	-3.040648	0.043351	-3.290165
24	1	0	-2.405944	1.6311	-2.818398
25	1	0	-4.119271	1.456027	-3.268261
26	6	0	-3.934143	1.999379	-0.560199
27	1	0	-4.184923	1.807636	0.486929
28	1	0	-4.782635	2.50674	-1.032831
29	1	0	-3.06595	2.662367	-0.590854
30	6	0	-4.839288	-0.260254	-1.21508
31	1	0	-4.633021	-1.19975	-1.73649
32	1	0	-5.71434	0.205997	-1.681118
33	1	0	-5.085667	-0.491038	-0.174284
34	6	0	3.129949	-1.240796	-0.364369
35	6	0	4.059772	-2.25207	-0.071732
36	1	0	4.107503	-2.662752	0.935438
37	6	0	4.933556	-2.737672	-1.045674
38	1	0	5.643684	-3.522078	-0.796681
39	6	0	4.90001	-2.207106	-2.333397
40	1	0	5.582713	-2.577437	-3.093809
41	6	0	3.992002	-1.192721	-2.642451
42	1	0	3.96865	-0.771141	-3.644136
43	6	0	3.11618	-0.717697	-1.668467
44	1	0	2.406966	0.066606	-1.918289
45	6	0	-0.053871	2.97536	-0.347954

46	6	0	0.269556	2.848755	-1.710471
47	1	0	0.592688	1.880371	-2.08615
48	6	0	0.167758	3.927164	-2.587795
49	1	0	0.431929	3.802462	-3.635526
50	6	0	-0.281547	5.165492	-2.12547
51	1	0	-0.366651	6.006681	-2.808897
52	6	0	-0.624126	5.314152	-0.783106
53	1	0	-0.978989	6.273825	-0.414436
54	6	0	-0.50668	4.230915	0.090218
55	1	0	-0.774244	4.362929	1.137578
56	6	0	-3.139575	-0.107376	2.889364
57	1	0	-3.439177	-0.33595	3.917988
58	1	0	-3.999468	-0.229485	2.226803
59	1	0	-2.798542	0.928359	2.825064
60	6	0	-0.542096	-0.985367	3.681762
61	1	0	-1.00829	-1.135116	4.661174
62	1	0	-0.125905	0.024088	3.62529
63	1	0	0.276455	-1.700378	3.564819
64	6	0	-2.468841	-2.867086	2.792564
65	1	0	-2.791076	-2.901024	3.839829
66	1	0	-1.709452	-3.638208	2.631612
67	1	0	-3.324866	-3.094557	2.150399
68	6	0	0.373933	-4.105241	-0.400485
69	1	0	0.34529	-5.019709	-1.002678
70	1	0	0.129434	-4.350458	0.636152
71	1	0	1.386112	-3.69306	-0.429515
72	6	0	-0.338878	-2.806327	-2.82371
73	1	0	-0.359451	-3.800028	-3.285338
74	1	0	0.666339	-2.384684	-2.901576
75	1	0	-1.023198	-2.140612	-3.356192
76	6	0	-2.37761	-3.834155	-1.121219
77	1	0	-2.250323	-4.744555	-1.717491
78	1	0	-3.164643	-3.21901	-1.563984
79	1	0	-2.686915	-4.103055	-0.108704
80	1	0	2.519608	-1.334952	2.223096
81	1	0	-0.475469	2.166227	2.120871
82	1	0	0.245123	-0.268234	-1.078666
83	1	0	0.640821	-1.358419	0.928937

Е

-2459.201376

42

Sigma	1
Nneg	0
E+ZPE	-2458.497529
U	-2458.452275
Н	-2458.451331
G	-2458.577693

TS(6-7)

Contar Atomia Atomia Coordinatos (Angstroma)				·····	
Center	Atomic	Atomic	x	v	1S) 7
1	42	0	-1.045268	-0.773009	-0.216061
2	15	0	-1.429341	-1.539361	2.16126
3	15	0	-0.456654	-3.110442	-1.04859
4	14	0	1.659722	-0.532759	0.581878
5	14	0	-0.278966	1.418963	0.821834
6	7	0	1.408672	1.040125	1.277733
7	7	0	-2.589278	-0.069107	-0.693989
8	6	0	2.393206	1.88239	1.998456
9	6	0	3.352015	0.983713	2.791755
10	1	0	2.806586	0.380177	3.524747
11	1	0	4.09141	1.588357	3.328291
12	1	0	3.902255	0.30665	2.128458
13	6	0	1.673116	2.815945	2.979042
14	1	0	1.004046	3.504618	2.454135
15	1	0	2.404278	3.418069	3.52939
16	1	0	1.079575	2.250478	3.704432
17	6	0	3.196941	2.730257	0.998802
18	1	0	2.525784	3.358645	0.406591
19	1	0	3.758873	2.088968	0.313592
20	1	0	3.909618	3.381042	1.519966
21	6	0	-3.718769	0.655042	-1.222251
22	6	0	-3.325189	1.249489	-2.583961
23	1	0	-3.032008	0.45417	-3.275646
24	1	0	-2.479239	1.931057	-2.467297
25	1	0	-4.168006	1.799742	-3.017477
26	6	0	-4.113249	1.77838	-0.250128

27	1	0	-4.379457	1.36807	0.728375
28	1	0	-4.978312	2.326546	-0.639398
29	1	0	-3.287048	2.48186	-0.120803
30	6	0	-4.888685	-0.329961	-1.391461
31	1	0	-4.610027	-1.142264	-2.06936
32	1	0	-5.764991	0.182043	-1.804096
33	1	0	-5.168044	-0.76814	-0.428095
34	6	0	3.180202	-0.734719	-0.533693
35	6	0	4.137751	-1.725628	-0.262127
36	1	0	4.014403	-2.360882	0.613497
37	6	0	5.248471	-1.910131	-1.087099
38	1	0	5.977288	-2.682328	-0.853378
39	6	0	5.425475	-1.098281	-2.205719
40	1	0	6.29088	-1.235715	-2.848831
41	6	0	4.487331	-0.106236	-2.496058
42	1	0	4.62124	0.53021	-3.367171
43	6	0	3.378806	0.06815	-1.671011
44	1	0	2.65745	0.846231	-1.911034
45	6	0	-0.366178	2.999392	-0.239456
46	6	0	0.053271	3.007378	-1.580792
47	1	0	0.403521	2.079632	-2.029376
48	6	0	0.0055	4.167232	-2.352092
49	1	0	0.339271	4.146598	-3.386911
50	6	0	-0.480821	5.35357	-1.799929
51	1	0	-0.524055	6.25859	-2.400593
52	6	0	-0.916466	5.369019	-0.476493
53	1	0	-1.301979	6.287785	-0.040725
54	6	0	-0.855745	4.204167	0.290846
55	1	0	-1.198852	4.232208	1.324037
56	6	0	-2.967075	-0.676752	2.705779
57	1	0	-3.220441	-0.946806	3.736829
58	1	0	-3.785247	-0.954475	2.038119
59	1	0	-2.81193	0.401385	2.634726
60	6	0	-0.300614	-1.151228	3.568294
61	1	0	-0.789481	-1.361339	4.525223
62	1	0	-0.015539	-0.09795	3.520619
63	1	0	0.610064	-1.750183	3.492923
64	6	0	-1.872839	-3.280748	2.604505
65	1	0	-2.282671	-3.325348	3.619207
66	1	0	-0.98723	-3.918339	2.560727
67	1	0	-2.618797	-3.661329	1.901779

68	6	0	-0.031304	-4.606658	-0.044838
69	1	0	0.225693	-5.44731	-0.697748
70	1	0	-0.875579	-4.896961	0.582489
71	1	0	0.824494	-4.386578	0.599793
72	6	0	0.885013	-3.201338	-2.31092
73	1	0	0.942322	-4.20183	-2.752875
74	1	0	1.846555	-2.954136	-1.853585
75	1	0	0.686273	-2.46464	-3.092296
76	6	0	-1.900959	-3.723199	-2.018216
77	1	0	-1.667051	-4.663788	-2.528564
78	1	0	-2.170969	-2.963338	-2.755099
79	1	0	-2.755163	-3.872006	-1.352952
80	1	0	1.875946	-1.653614	1.562665
81	1	0	-1.002499	1.864392	2.070078
82	1	0	-0.464082	-0.797765	-1.841928
83	1	0	0.590488	-0.266484	-0.706492

E	-2459.182143
Sigma	1
Nneg	-267
E+ZPE	-2458.479478
U	-2458.435025
Н	-2458.434081
G	-2458.557289

Center	Atomic	Atomic	Co	oordinates (Angstron	 ns)
Number	Number	Туре	Х	Y	Z
1	42	0	-0.331047	-1.119554	-0.175782
2	15	0	-0.689194	-1.883534	2.247913
3	15	0	1.602429	-2.721411	-0.447162
4	14	0	1.665676	0.524609	0.639331
5	14	0	-0.960333	1.152083	0.867782
6	7	0	0.623383	1.87687	1.097645

7	7	0	-1.816604	-1.660501	-0.98199
8	6	0	0.975894	3.218161	1.615127
9	6	0	2.326534	3.160731	2.338654
10	1	0	2.291255	2.461708	3.180546
11	1	0	2.59437	4.150707	2.724047
12	1	0	3.124916	2.840422	1.661371
13	6	0	-0.092768	3.69953	2.605391
14	1	0	-1.076358	3.770216	2.129007
15	1	0	0.161652	4.694539	2.987168
16	1	0	-0.173975	3.016852	3.457658
17	6	0	1.067692	4.210367	0.443786
18	1	0	0.110237	4.268088	-0.082518
19	1	0	1.831251	3.886582	-0.269697
20	1	0	1.328396	5.21644	0.794767
21	6	0	-2.997094	-1.824255	-1.794408
22	6	0	-2.801448	-1.036623	-3.100203
23	1	0	-1.909446	-1.388609	-3.626402
24	1	0	-2.677227	0.027321	-2.883533
25	1	0	-3.670942	-1.164225	-3.754708
26	6	0	-4.217661	-1.286305	-1.030752
27	1	0	-4.366931	-1.84128	-0.099283
28	1	0	-5.123077	-1.389747	-1.638968
29	1	0	-4.078493	-0.230063	-0.786699
30	6	0	-3.175564	-3.321518	-2.098463
31	1	0	-2.308182	-3.708532	-2.641974
32	1	0	-4.068207	-3.483831	-2.71229
33	1	0	-3.285687	-3.893792	-1.171838
34	6	0	3.019591	1.012673	-0.613067
35	6	0	4.380521	0.862765	-0.296931
36	1	0	4.660158	0.507617	0.69403
37	6	0	5.385601	1.173073	-1.21536
38	1	0	6.430543	1.047588	-0.941233
39	6	0	5.048315	1.655333	-2.478253
40	1	0	5.826457	1.904177	-3.195365
41	6	0	3.703492	1.819886	-2.815831
42	1	0	3.432845	2.197311	-3.79915
43	6	0	2.707586	1.495393	-1.89693
44	1	0	1.664323	1.613647	-2.181361
45	6	0	-2.199169	2.224761	-0.105118
46	6	0	-1.985975	2.603163	-1.441829
47	1	0	-1.082188	2.275089	-1.95219

48	6	0	-2.906511	3.389096	-2.132452
49	1	0	-2.713171	3.67275	-3.164245
50	6	0	-4.078773	3.808937	-1.501467
51	1	0	-4.800708	4.418072	-2.039431
52	6	0	-4.316745	3.443435	-0.17824
53	1	0	-5.226367	3.768115	0.321407
54	6	0	-3.382948	2.665002	0.508181
55	1	0	-3.575905	2.396504	1.54562
56	6	0	-2.453636	-1.732119	2.758255
57	1	0	-2.595909	-2.11019	3.776375
58	1	0	-3.069807	-2.309546	2.065406
59	1	0	-2.760847	-0.686444	2.710884
60	6	0	0.207323	-1.069746	3.628494
61	1	0	-0.13136	-1.456315	4.595043
62	1	0	0.031798	0.007257	3.580593
63	1	0	1.280772	-1.240098	3.518553
64	6	0	-0.437623	-3.673378	2.649503
65	1	0	-0.742673	-3.88449	3.679958
66	1	0	0.608342	-3.96413	2.530853
67	1	0	-1.044496	-4.280259	1.971724
68	6	0	2.912534	-2.981153	0.827269
69	1	0	3.600888	-3.775999	0.520988
70	1	0	2.475239	-3.241247	1.793443
71	1	0	3.471548	-2.050613	0.953736
72	6	0	2.637328	-2.440697	-1.938974
73	1	0	3.410458	-3.210851	-2.031708
74	1	0	3.102274	-1.454159	-1.875849
75	1	0	1.99211	-2.457036	-2.820605
76	6	0	1.015391	-4.447128	-0.753402
77	1	0	1.848882	-5.111078	-1.007005
78	1	0	0.301549	-4.427204	-1.580654
79	1	0	0.501287	-4.836677	0.127859
80	1	0	2.530967	0.108324	1.810158
81	1	0	-1.680942	1.091226	2.197232
82	1	0	0.557737	-0.787388	-1.583026
83	1	0	-0.375462	0.374115	-0.924154

Е

-2459.197662

Sigma	1
Nneg	0
E+ZPE	-2458.493774
U	-2458.448884
Н	-2458.44794
G	-2458.572227

TS (7-10)

Center	Atomic	Atomic	Co	oordinates (Angstron	 ns)
Number	Number	Туре	Х	Y	Z
1	42	0	-0.502035	-1.077889	-0.166925
2	15	0	-0.930814	-1.857061	2.232034
3	15	0	1.184087	-2.89451	-0.584912
4	14	0	1.710767	0.26605	0.65686
5	14	0	-0.796801	1.244923	0.886345
6	7	0	0.86935	1.728648	1.176233
7	7	0	-2.083576	-1.360178	-0.920795
8	6	0	1.406701	2.982665	1.750724
9	6	0	2.68694	2.68532	2.541342
10	1	0	2.487945	1.98465	3.358852
11	1	0	3.094211	3.607515	2.970296
12	1	0	3.458328	2.248802	1.89819
13	6	0	0.376088	3.60862	2.698818
14	1	0	-0.555502	3.844682	2.173832
15	1	0	0.764347	4.541674	3.122009
16	1	0	0.140316	2.930491	3.525623
17	6	0	1.726298	3.976153	0.621155
18	1	0	0.821858	4.211389	0.05217
19	1	0	2.462114	3.549443	-0.066965
20	1	0	2.133296	4.912597	1.021906
21	6	0	-3.279551	-1.309207	-1.725942
22	6	0	-2.997011	-0.435466	-2.959089
23	1	0	-2.166925	-0.851952	-3.537468
24	1	0	-2.730337	0.578983	-2.651629
25	1	0	-3.883507	-0.388384	-3.60137

26	6	0	-4.423076	-0.699261	-0.898904
27	1	0	-4.626971	-1.306863	-0.011819
28	1	0	-5.339531	-0.650539	-1.497258
29	1	0	-4.163602	0.312262	-0.57577
30	6	0	-3.639957	-2.740756	-2.158041
31	1	0	-2.830196	-3.177021	-2.750943
32	1	0	-4.551979	-2.741489	-2.764783
33	1	0	-3.807393	-3.377014	-1.283171
34	6	0	3.114065	0.610325	-0.592756
35	6	0	4.443026	0.266701	-0.291041
36	1	0	4.673917	-0.152655	0.687249
37	6	0	5.478576	0.462599	-1.20696
38	1	0	6.49718	0.187864	-0.942805
39	6	0	5.207591	1.020419	-2.454625
40	1	0	6.010557	1.179878	-3.169749
41	6	0	3.897081	1.376203	-2.778884
42	1	0	3.677544	1.814229	-3.74972
43	6	0	2.869358	1.166532	-1.861504
44	1	0	1.852783	1.439649	-2.137249
45	6	0	-1.804452	2.513849	-0.117269
46	6	0	-1.408981	2.947331	-1.394153
47	1	0	-0.49351	2.553891	-1.832423
48	6	0	-2.15859	3.874876	-2.115111
49	1	0	-1.82397	4.198221	-3.09796
50	6	0	-3.339972	4.387704	-1.576623
51	1	0	-3.928424	5.10913	-2.137736
52	6	0	-3.757392	3.971066	-0.314291
53	1	0	-4.674072	4.368657	0.114922
54	6	0	-2.992812	3.049818	0.404251
55	1	0	-3.322618	2.746706	1.396742
56	6	0	-2.676906	-1.514259	2.701394
57	1	0	-2.868955	-1.793903	3.742605
58	1	0	-3.332937	-2.086531	2.041535
59	1	0	-2.879958	-0.451729	2.558648
60	6	0	0.0212	-1.139633	3.629343
61	1	0	-0.334974	-1.537951	4.58485
62	1	0	-0.093203	-0.053355	3.620561
63	1	0	1.082735	-1.367024	3.506649
64	6	0	-0.861441	-3.663773	2.626434
65	1	0	-1.227707	-3.857372	3.64042
66	1	0	0.16015	-4.041862	2.548569

67	1	0	-1.487517	-4.208575	1.914407
68	6	0	2.495653	-3.379973	0.619754
69	1	0	3.065085	-4.237495	0.246158
70	1	0	2.061508	-3.634725	1.588968
71	1	0	3.171518	-2.533962	0.765663
72	6	0	2.194269	-2.686195	-2.107464
73	1	0	2.855607	-3.544479	-2.267778
74	1	0	2.788571	-1.773539	-2.020068
75	1	0	1.522632	-2.576059	-2.962709
76	6	0	0.37302	-4.521089	-0.926798
77	1	0	1.106979	-5.275682	-1.230022
78	1	0	-0.360884	-4.387607	-1.725326
79	1	0	-0.154325	-4.871711	-0.036769
80	1	0	2.525946	-0.304822	1.800518
81	1	0	-1.570612	1.274868	2.187964
82	1	0	0.293713	-0.730976	-1.647068
83	1	0	-0.207151	0.268284	-1.14225

Е	-2459.196158
Sigma	1
Nneg	-559
E+ZPE	-2458.494154
U	-2458.449279
Н	-2458.448335
G	-2458.573166

Center	Atomic	Atomic	Co	ordinates (Angstron	ns)
Number	Number	Туре	Х	Y	Ζ
1	42	0	-0.602791	-1.02835	-0.147511
2	15	0	-1.154217	-1.804823	2.18174
3	15	0	0.911284	-2.952099	-0.630786
4	14	0	1.730289	0.1239	0.676798

5	14	0	-0.671448	1.319499	0.878664
6	7	0	1.030382	1.65845	1.189089
7	7	0	-2.217013	-1.168824	-0.871704
8	6	0	1.671199	2.857874	1.772066
9	6	0	2.929325	2.449519	2.548037
10	1	0	2.680977	1.759025	3.36065
11	1	0	3.414149	3.331194	2.981771
12	1	0	3.656772	1.958181	1.893361
13	6	0	0.701451	3.554905	2.735069
14	1	0	-0.21185	3.871343	2.220312
15	1	0	1.167335	4.448749	3.164648
16	1	0	0.416494	2.888915	3.556185
17	6	0	2.060249	3.834689	0.649668
18	1	0	1.173938	4.143001	0.08703
19	1	0	2.758513	3.358593	-0.045138
20	1	0	2.539274	4.734097	1.05566
21	6	0	-3.405651	-1.007162	-1.67307
22	6	0	-3.018087	-0.276338	-2.96962
23	1	0	-2.265249	-0.84831	-3.520828
24	1	0	-2.608081	0.71075	-2.739702
25	1	0	-3.898049	-0.150861	-3.60994
26	6	0	-4.434338	-0.17545	-0.890795
27	1	0	-4.719818	-0.684147	0.034941
28	1	0	-5.338589	-0.025397	-1.490897
29	1	0	-4.015538	0.801178	-0.635314
30	6	0	-3.974917	-2.398831	-1.996011
31	1	0	-3.245995	-2.990114	-2.558532
32	1	0	-4.887389	-2.311597	-2.595737
33	1	0	-4.217878	-2.938989	-1.075546
34	6	0	3.185525	0.330664	-0.544096
35	6	0	4.443467	-0.226989	-0.256668
36	1	0	4.598695	-0.720968	0.701373
37	6	0	5.506266	-0.147873	-1.158468
38	1	0	6.468007	-0.587739	-0.904797
39	6	0	5.33837	0.506942	-2.376918
40	1	0	6.164058	0.576765	-3.080357
41	6	0	4.102819	1.079261	-2.684577
42	1	0	3.964951	1.598476	-3.630109
43	6	0	3.045489	0.98497	-1.781773
44	1	0	2.090629	1.437439	-2.042913
45	6	0	-1.537844	2.676555	-0.148608

46	6	0	-1.107893	3.046822	-1.434331
47	1	0	-0.234898	2.560824	-1.86727
48	6	0	-1.766249	4.02953	-2.171519
49	1	0	-1.405383	4.300706	-3.160897
50	6	0	-2.889981	4.66502	-1.640441
51	1	0	-3.407856	5.429465	-2.214035
52	6	0	-3.339941	4.315162	-0.369099
53	1	0	-4.211189	4.808876	0.055007
54	6	0	-2.666158	3.33679	0.364568
55	1	0	-3.020283	3.084705	1.362897
56	6	0	-2.839159	-1.266829	2.688236
57	1	0	-3.056519	-1.56395	3.719532
58	1	0	-3.567741	-1.722955	2.01414
59	1	0	-2.90671	-0.181936	2.591595
60	6	0	-0.105891	-1.232318	3.57738
61	1	0	-0.481667	-1.61885	4.530275
62	1	0	-0.106915	-0.139917	3.59859
63	1	0	0.92379	-1.563421	3.423549
64	6	0	-1.286676	-3.617045	2.534967
65	1	0	-1.654423	-3.79436	3.551293
66	1	0	-0.315225	-4.105202	2.425466
67	1	0	-1.981882	-4.069319	1.821974
68	6	0	2.160365	-3.580084	0.575849
69	1	0	2.637563	-4.493115	0.203986
70	1	0	1.692419	-3.788923	1.540586
71	1	0	2.924226	-2.814782	0.732473
72	6	0	1.953255	-2.8244	-2.145525
73	1	0	2.525487	-3.742971	-2.314728
74	1	0	2.639685	-1.980582	-2.043556
75	1	0	1.305482	-2.639398	-3.006911
76	6	0	-0.037481	-4.495385	-1.005875
77	1	0	0.631151	-5.311699	-1.300569
78	1	0	-0.739551	-4.292848	-1.818498
79	1	0	-0.613254	-4.800118	-0.1292
80	1	0	2.453255	-0.553031	1.822458
81	1	0	-1.449801	1.450101	2.171299
82	1	0	0.163654	-0.606218	-1.72848
83	1	0	-0.109984	0.178916	-1.364764

E

-2459.197798

Sigma	1
Nneg	0
E+ZPE	-2458.493745
U	-2458.44869
Н	-2458.447746
G	-2458.57288

Center Atomic Atomic				Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	42	0	1.163014	-0.284152	-0.170761	
2	15	0	2.976585	1.138717	-1.049533	
3	15	0	2.035249	-2.54989	-0.586157	
4	14	0	-1.141573	-1.136493	-0.965328	
5	14	0	-0.504924	1.480152	-1.053107	
6	7	0	-1.834754	0.402633	-1.489785	
7	7	0	1.19035	-0.152078	1.55326	
8	6	0	-3.132071	0.695823	-2.136886	
9	6	0	-3.558744	-0.490879	-3.010235	
10	1	0	-2.812359	-0.693702	-3.784945	
11	1	0	-4.51632	-0.280564	-3.499544	
12	1	0	-3.684368	-1.399056	-2.411241	
13	6	0	-3.002923	1.94102	-3.023159	
14	1	0	-2.710523	2.818002	-2.435784	
15	1	0	-3.960807	2.16727	-3.504708	
16	1	0	-2.251758	1.789562	-3.805009	
17	6	0	-4.202951	0.947575	-1.061941	
18	1	0	-3.922625	1.799373	-0.43524	
19	1	0	-4.313502	0.070448	-0.417284	
20	1	0	-5.176563	1.163073	-1.519095	
21	6	0	1.402599	0.032192	2.970327	
22	6	0	0.063832	-0.114269	3.708416	
23	1	0	-0.376898	-1.095997	3.517213	
24	1	0	-0.637684	0.654804	3.375751	
25	1	0	0.21504	-0.001197	4.787597	
26	6	0	1.976424	1.439462	3.198675	

27	1	0	2.948385	1.539767	2.705459
28	1	0	2.112052	1.62725	4.269495
29	1	0	1.297991	2.193459	2.791238
30	6	0	2.393144	-1.034803	3.463638
31	1	0	1.991111	-2.038069	3.29418
32	1	0	2.579023	-0.915112	4.536629
33	1	0	3.346091	-0.946163	2.933188
34	6	0	-2.277152	-2.135685	0.195014
35	6	0	-2.79798	-3.376975	-0.207346
36	1	0	-2.561194	-3.756585	-1.200074
37	6	0	-3.621591	-4.131042	0.6306
38	1	0	-4.011797	-5.087881	0.291606
39	6	0	-3.95247	-3.651556	1.896201
40	1	0	-4.598408	-4.231955	2.550115
41	6	0	-3.451946	-2.418478	2.317972
42	1	0	-3.708167	-2.036672	3.303555
43	6	0	-2.622664	-1.678517	1.477548
44	1	0	-2.226531	-0.726524	1.821671
45	6	0	-1.020439	2.891202	0.123262
46	6	0	-1.717075	2.646687	1.318951
47	1	0	-2.002889	1.626517	1.565488
48	6	0	-2.068053	3.680815	2.184934
49	1	0	-2.615177	3.462614	3.099211
50	6	0	-1.72138	4.997601	1.877681
51	1	0	-1.99233	5.806244	2.551694
52	6	0	-1.037439	5.268846	0.694262
53	1	0	-0.777369	6.293372	0.438292
54	6	0	-0.700682	4.226685	-0.171167
55	1	0	-0.194154	4.459035	-1.106949
56	6	0	3.001068	2.905113	-0.516951
57	1	0	3.792643	3.464876	-1.027082
58	1	0	3.167339	2.955593	0.562144
59	1	0	2.031495	3.361263	-0.726101
60	6	0	2.915305	1.294761	-2.888291
61	1	0	3.712316	1.955829	-3.244133
62	1	0	1.945456	1.705132	-3.17976
63	1	0	3.036628	0.313606	-3.355516
64	6	0	4.761144	0.710285	-0.789609
65	1	0	5.42634	1.485487	-1.18652
66	1	0	4.983802	-0.237208	-1.286342
67	1	0	4.956646	0.587441	0.27931

68	6	0	2.005703	-3.083552	-2.353232
69	1	0	2.322523	-4.127622	-2.444651
70	1	0	2.678028	-2.457967	-2.946952
71	1	0	0.990289	-2.977494	-2.743777
72	6	0	1.115464	-3.917545	0.242498
73	1	0	1.572522	-4.893429	0.044461
74	1	0	0.077048	-3.920509	-0.096085
75	1	0	1.106681	-3.733137	1.319911
76	6	0	3.766035	-3.002827	-0.101184
77	1	0	3.968723	-4.063227	-0.289116
78	1	0	3.908947	-2.797664	0.963225
79	1	0	4.481734	-2.397099	-0.661709
80	1	0	-1.073652	-2.088116	-2.147729
81	1	0	-0.077057	2.288163	-2.2649

Е	-2458.009923
Sigma	1
Nneg	0
E+ZPE	-2457.322134
U	-2457.277415
Н	-2457.276471
G	-2457.401072

PhSiH₃

Center	Atomic	Atomic	Co	oordinates (Angstron	 ns)
Number	Number	Туре	Х	Y	Z
1	14	0	2.344439	0.000001	0.005629
2	6	0	0.466737	0.000011	-0.011433
3	6	0	-0.256036	1.203912	-0.009184
4	1	0	0.273534	2.154253	-0.022288
5	6	0	-1.649718	1.206168	0.003145
6	1	0	-2.190168	2.149051	0.003063
7	6	0	-2.348717	-0.000009	0.010145
8	1	0	-3.435425	-0.000016	0.016737
9	6	0	-1.649702	-1.206178	0.003148

10	1	0	-2.190139	-2.149068	0.003068
11	6	0	-0.256022	-1.203903	-0.009186
12	1	0	0.273558	-2.15424	-0.022292
13	1	0	2.859176	1.215319	-0.685163
14	1	0	2.888868	-0.000496	1.394275
15	1	0	2.859195	-1.214822	-0.686022

Е	-522.8075772
Sigma	1
Nneg	0
E+ZPE	-522.691954
U	-522.684935
Н	-522.683991
G	-522.723868

 ${\rm H_2}$

Center	Atomic	Atomic		Coordii	nates (Angstroms)
Number	Number	Туре	Х	Y	Ζ
1	1	0	0	0	0.371682
2	1	0	0	0	-0.371682

Е	-1.17751651
Sigma	2
Nneg	0
E+ZPE	-1.17751651
U	-1.17515599
Н	-1.17421178
G	-1.18900554

III. DFT calculations

The unconstrained geometry optimization was carried out for all the considered structures with the Gaussian03 program package² using DFT and applying Becke three parameter hybrid exchange functional in conjunction with gradient-corrected nonlocal correlation functional of Perdew and Wang (B3PW91)³.The 6-31G(d,p) basis set was used for the H, C, N, O, Si, P and Cl atoms. The Hay-Wadt effective core potentials (ECP) and the corresponding VDZ basis sets were used for the Mo atoms⁴. The same level of theory was used in the frequency calculations performed at all the located stationary points. The thermodynamic parameters were calculated in the rigid rotor-harmonic oscillator approximation. For all the located transition state structures, the minimum energy reaction paths were investigated using the Gonzales-Schlegel method⁵.

Gaussian 03 (Revision D.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zak rzewski, V. G.; J. A. Montgomery, Jr., R.
E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C.
Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J.
Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Wallingford, CT, 2004.

3 (a) A. D. Becke, J. Chem. Phys., 1993, **98**, 5648; (b) J. P. Perdew, K. Burke, Y, Wang, Phys. Rev. B., 1996, **54**, 16533.

4 P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

5 C. Gonzalez, H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.

^{1 (}*a*) S. K. Ignatov, A. Y. Khalimon, N. H. Rees, A. G. Razuvaev, P. Mountford, G. I. Nikonov, *Inorg. Chem.*, 2009, **48**, 9605; (*b*) P. W. Dyer, V. C. Gibson, J. A. K. Howard, B. Whittle, C. Wilson, *Polyhedron*, 1995, **14**, 103.