Supporting information

A New Fluorescent Probe for Zn²⁺ with Red Emission and Its Application in Bioimaging

Yiqun Tan, Min Liu, Junkuo Gao, Jiancan Yu, Yuanjing Cui, Yu Yang*, Guodong Qian*

State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (P. R. China).

Corresponding Authors:

gdqian@zju.edu.cn (G. Qian), yuyang@zju.edu.cn (Y. Yang)

1. Characterization data

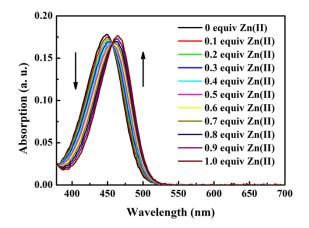
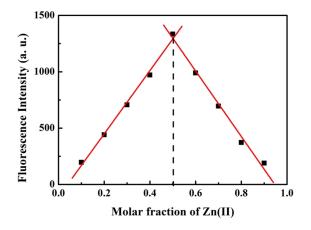



Figure S1. Absorption spectra of ZC-F4 (1 μ M) upon titration of Zn²⁺ at the concentration of 0,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 equiv.

2. Job's plot analysis

Job's plot analysis is carried on to determine the stoichiometry of ZC-F4 with Zn^{2+} , during which the summation of $[Zn^{2+}]$ and [ZC-F4] is kept as 0.15 μ M. The results suggest that Zn^{2+} complex with ZC-F4 in 1:1 form.

Figure S2. Job plot Analysis of the stoichiometry of ZC-F4 and Zn²⁺ (excited at 368 nm and monitored at 609 nm)

3. Calculation of pKa

The pKa of ZC-F4 was calculated by using the Henderson-Hasselbalch equation:

$$-\log \frac{F_{\max} - F}{F - F_{\min}} = pH - pK_a$$
(1)

where F_{max} and F_{min} are the corresponding maximum and minimum fluorescence intensity, *F* is the fluorescence intensity observed at a fixed wavelength. The p K_a of 26.11 for ZC-F4-Zn indicates ZC-F4 can form a stable complex with Zn²⁺.

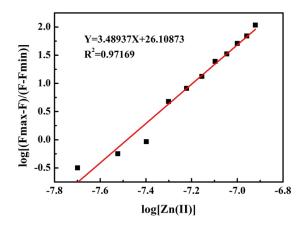


Figure S3. Analysis of fluorescence intensity changes as a function of $[Zn^{2+}]$ by using

Henderson-Hasselbalch equation.