Catalyst life in imidazolium-based ionic liquids for palladium-catalysed asymmetric allylic alkylation

I. Guerrero-Ríos and E. Martin*

Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, D. F., México.
Fax: +525556223720
E-mail: erikam@unam.mx

1. Experimental Part

General procedure for allylic alkylation of rac-1,3-diphenyl-3-acetoxyprop-1-ene (I) in IL and recycling. A solution of $\left[\mathrm{PdCl}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}(1.8 \mathrm{mg}, 0.005 \mathrm{mmol})$ and (S)-BINAP in the corresponding ratio ($\mathrm{L} / \mathrm{Pd}=1.25$ and 2.5) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred for 30 min . Subsequently, IL was added (1 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure. Using a micropipette, I ($126 \mathrm{mg}, 0.5 \mathrm{mmol}, 117 \mu \mathrm{~L}$), dimethyl malonate ($\mathbf{I I}$) ($198 \mathrm{mg}, 1.5 \mathrm{mmol}, 126 \mu \mathrm{~L}$), N,O-bis(trimethylsilyl)acetamide (BSA) ($305 \mathrm{mg}, 1.5 \mathrm{mmol}, 366 \mu \mathrm{~L}$) were added and solid KOAc (2 mg) was added to start the catalytic reaction. At the end of the reaction the product (III) was extracted with dry hexane ($8 x 3 \mathrm{~mL}$) and the ionic liquid was dried for 3 h at 60 C and stirring in order to remove solvent traces. The IL-catalytic system was reused for another catalytic reaction by simply adding I, II, BSA and KOAc in the appropriate amount (see above).

When trapping agents were used the system was charged at the beginning of the reaction with the appropriate reactant 1,5-cyclooctadiene (COD), 2,5-norbornadiene (NBD) or acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)(0.011 \mathrm{mmol})$.

Table S1. Pd/S-BINAP catalysed asymmetric allylic alkylation of I in IL

Entry	IL	$\mathrm{L}^{*} / \mathrm{Pd}$				
			Conv.\% ${ }^{[c]}$	$e e^{\text {\% }}{ }^{\text {c] }}$	Conv.\% ${ }^{[c]}$	$e e \%{ }^{\text {[]] }}$
1	[BMIM][BF_{4}]	1.25	96	80	3	-
2	[BMIM] $\left[\mathrm{NTf}_{2}\right]$	1.25	91	84	9	65
3	[BMIM] $\left[\mathrm{BF}_{4}\right]$	$1{ }^{\text {[d] }}$	99	77	5	-
4	[BMIM] ${ }^{\text {NTf }}$]	$1{ }^{\text {[d] }}$	96	81	5	-
5	[BMIM] $\left[\mathrm{BF}_{4}\right]$	2.5	93	70	3	-
6	[BMIM] ${ }^{\text {NTf }}$] $]$	2.5	96	81	5	-
$7{ }^{\text {e }}$	[BMIM] $\left[\mathrm{NTf}_{2}\right]$	1.25	93	82	2	-
$8{ }^{\text {f }}$	[BMIM] NTf_{2}]	1.25	92	87	3	-
9^{8}	[BMIM][NTf_{2}]	1.25	99	77	4	-
a $20^{\circ} \mathrm{C}$;	0 min ; 1\%	$\eta^{3}-\mathrm{C}_{3} \mathrm{H}$	I (0.5	mol);	BSA 1/3/3	$=$
bis(trimethylsilyl)acetamide); KOAc (0.005 mmol); IL (1 mL). ${ }^{b} 2^{\text {nd }}$ cycle recharging the system with \mathbf{I}						
(0.5 mmol); $\mathbf{I} / \mathbf{I I} /$ BSA $1 / 3 / 3$ after product extraction with hexane (8 x 3 mL). ${ }^{\text {c }}$ Determined by HPLC. ${ }^{d} 2 \%$						
$\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)((S)-\mathrm{BINAP})\right] \mathrm{BF}_{4}(\mathbf{1}) .{ }^{\mathrm{e}}$ In presence of COD. ${ }^{\mathrm{f}}$ In presence of NDB. ${ }^{\text {g }}$ in presence of $\mathrm{CH}_{3} \mathrm{CN}$.						

Modified synthesis of [HDMI] $\left[\mathrm{BF}_{4}\right]^{1} \mathbf{(B)}$. A mixture of 1,2-dimethyl-3-hexylimidazolium methanesulfonate (12.0 g, 43.4 mmol) synthesized as previously described, ${ }^{2}$ sodium tetrafluoroborate ($5.0 \mathrm{~g}, 45.6 \mathrm{mmol}$) and distilled water (50 mL) was vigorously stirred at $50^{\circ} \mathrm{C}$ for 30 min , resulting in formation of two phases. The aqueous phase was discarded and sodium tetrafluoroborate ($0.012 \mathrm{~g}, 0.1 \mathrm{mmol}$) in distilled water (5 mL) were added and stirring was continued for 15 min . Addition of dichloromethane (50 mL) allowed separation of two phases. The organic phase was separated, dried with magnesium sulfate and filtered through a short (3 cm) basic alumina column. After removal of solvent under reduced pressure the desired product was obtained as a pale amber liquid (82% yield: $9.5 \mathrm{~g}, 35.6$ mmol).

Experiment of stoichiometric allylic alkylation of rac-1,3-diphenyl-3-acetoxyprop-1-ene (I) in absence of IL. An NMR tube was charged with $\left[\operatorname{PdCl}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}(4.5 \mathrm{mg}, 0.012 \mathrm{mmol})$, (S)-BINAP $(9.6 \mathrm{mg}, 0.015)$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5$ mL) was added and stirred manually for 10 min when ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded. In a similar manner NMR spectra were recorded after addition of $\mathbf{I}(6.2 \mathrm{mg}, 0.024 \mathrm{mmol}$), dimethyl malonate ($\mathbf{I I}$) ($3.2 \mathrm{mg}, 0.024 \mathrm{mmol}$,
$2.8 \mu \mathrm{~L}$), N, O-bis(trimethylsilyl)acetamide (BSA) ($24.8 \mathrm{mg}, 0.024 \mathrm{mmol}, 6.0 \mu \mathrm{~L}$) and solid KOAc (1 mg) and finally, after addition of II ($3.2 \mathrm{mg}, 0.024 \mathrm{mmol}, 2.8 \mu \mathrm{~L}$) and BSA ($24.8 \mathrm{mg}, 0.024 \mathrm{mmol}, 6.0 \mu \mathrm{~L}$). When I was completely consumed according to ${ }^{1} \mathrm{H}$ NMR, $[\mathrm{BMIM}]\left[\mathrm{BF}_{4}\right](\mathrm{A})(0.123 \mathrm{mmol})$, was added and NMR were recorded after 10 and 120 min.

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectra for stoichiometric AAA reaction using $2((S)-\mathrm{BINAP}: \mathrm{Pd}=1.25)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. a) $\mathbf{2}$ in presence of $[\mathrm{BMIM}]\left[\mathrm{NTf} \mathrm{F}_{2}\right]$ (D) and 1 equiv. of \mathbf{I}; b) Addition of 1 equiv of II and BSA; c) Addition of another equivalent of II and BSA.

Fig. S2. ${ }^{31} \mathrm{P}$ NMR spectra for stoichiometric AAA reaction using $2((S)-\mathrm{BINAP}: \mathrm{Pd}=1.25)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in absence of IL. a) 2; b) Addition of 1 equiv of \mathbf{I}; c) Addition of 1 equivalent of $\mathbf{I I}$ and 1 of BSA; d) Addition of 1 equivalent of $\mathbf{I I}$ and 1 of BSA (spectra recorded after 10 min); e) Spectra recorded after 1 hr ; f) Addition of $\left[\mathrm{BMIM}^{2}\right]\left[\mathrm{BF}_{4}\right](\mathbf{A})$ (spectra recorded after 10 min); g) spectra recorded after 2 hr . (*) Unidentified species

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectra for stoichiometric AAA reaction using $2((S)-B I N A P: P d=1.25)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in absence of IL: a) 2; b) Addition of 1 equiv of \mathbf{I}; c) Addition of 1 equivalent of $\mathbf{I I}$ and 1 of BSA; d) Addition of 1 equivalent of $\mathbf{I I}$ and 1 of BSA (spectra recorded after 10 min); e) Spectra recorded after 1 hr ; f) Addition of $\left[\mathrm{BMIM}^{2}\left[\mathrm{BF}_{4}\right](\mathbf{A})\right.$ (spectra recorded after 10 min); g) spectra recorded after 2 hr .

Fig. S4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of enriched diasteroisomer 4a.

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectrum of complex 4

Fig. S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{4}$

OT6950_1 \#1-4 RT: 0.00-0.67 AV: 4 NL: 8.00E6
$\mathrm{T}:+\mathrm{c}$ FĀB Full ms [49.50-1000.50]

OT6950_1 \#1-4 RT: 0.00-0.67 AV: 4 NL: 8.00E6
T: + c FAB Full ms [49.50-1000.50]

OT6950_1 \#1-4 RT: 0.00-0.67 AV: 4 NL: 8.00E6
$\mathrm{T}:+\mathrm{c}$ FĀB Full ms [49.50-1000.50]

Fig. S7. MS-FAB ${ }^{+}$spectrum of complex 4

Fig. S8. HR-MS-TOF ${ }^{+}$spectrum of complex 4
a)
b)

c)

Fig. S9. ${ }^{31} \mathrm{P}$ NMR spectra for stoichiometric AAA reaction using 1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. a) $\mathbf{1}$; b) In presence of $[\mathrm{BMIM}]\left[\mathrm{BF}_{4}\right]$ (\mathbf{A}) and 1 equiv of I, II and BSA; c) Addition of another equivalent of II and BSA.

b)

Fig. S10. ${ }^{1} \mathrm{H}$ NMR spectra for stoichiometric AAA reaction using $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. a) $\mathbf{1}$; b) In presence of $[B M I M]\left[B F_{4}\right](\mathbf{A})$ and of 1 equiv of \mathbf{I}, II and BSA; c) Addition of another equivalent of II and BSA.

Fig. S11. ${ }^{1} \mathrm{H}$ NMR spectra for stoichiometric AAA reaction using $2((S)-\mathrm{BINAP}: \operatorname{Pd}=2.5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. a) 2 in presence of $[B M I M]\left[N T f_{2}\right]$ (D) and 1 equiv. of \mathbf{I}; b) Addition of 1 equiv of II and BSA; c) Addition of another equivalent of II and BSA.

REFERENCES:

1. Complete characterisation of $[\mathrm{HDMIM}]\left[\mathrm{BF}_{4}\right]$ in: D.-Q. Xu, B.-Y. Liu, S.-P. Luo, Z.-Y. Xu, Y.-C. Shen, Synthesis, 2003, 17, 2626.
2. C. Betti, D. Landini, A. Maia, Tetrahedron, 2008, 64, 1689.
