Electronic Supplementary Information for

Development of a functional ruthenium(II) complex for probing hypochlorous acid in

living cells

Zhiqiang Ye,^a Run Zhang,^a Bo Song,^a Zhichao Dai,^a Dayong Jin,^b Ewa M. Goldys^b and Jingli Yuan^{a*}

^aState Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian

116024, P. R. China.

^bMQ Photonics Centre, Faculty of Science, Macquarie University, NSW 2109, Sydney, Australia.

*Corresponding author. Tel/Fax: +86-411-84986041. E-mail: jingliyuan@aliyun.com

Fig. S1. ¹H NMR spectrum (400 MHz) of [Ru(bpy)(AN-bpy)₂](PF₆)₂ in CD₃CN.

Fig. S2. ¹³C NMR spectrum (100 MHz) of [Ru(bpy)₂(AN-bpy)](PF₆)₂ in CD₃CN.

Fig. S3. Mass spectrum of [Ru(bpy)₂(AN-bpy)](PF₆)₂.

Fig. S4. ¹H NMR spectrum (400 MHz) of [Ru(bpy)(HM-bpy)₂](PF₆)₂ in CD₃CN.

Fig. S5. ¹³C NMR spectrum (100 MHz) of [Ru(bpy)₂(HM-bpy)](PF₆)₂ in CD₃CN.

Fig. S6. Mass spectrum of [Ru(bpy)₂(HM-bpy)](PF₆)₂.

Fig. S7. HPLC analysis of $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ after reaction with HOC1. Hypochlorous acid (4.0 mM) was added to a solution of $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ (2.0 mM) in CH₃CN-borate buffer (50 mM, pH 7.4) (1: 50, v/v). The mixture was stirred at room temperature for 1 h, and then subjected to HPLC analysis with aqueous CH₃OH (50%)/HAc (1%) as eluent. The wavelength of the UV-vis detector was 456 nm. A: pure $[Ru(bpy)_2(HM-bpy)](PF_6)_2$ (2.0 mM); B: the product of $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ (2.0 mM) reacted with HOC1 (4.0 mM); C: a mixed solution of A (10 µL) and B (10 µL); D: pure $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ (2.0 mM).

Fig. S8. Mass spectrum of the reaction solution of $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ plus HOCl. Hypochlorous acid (4.0 mM) was added to a solution of $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ (2.0 mM) in CH₃CN-borate buffer (50 mM, pH 7.4) (1: 50, v/v). The mixture was stirred at room temperature for 1 h, and then subjected to the mass spectrum measurement.

Fig. S9. Job's plot of the reaction between $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ and hypochlorite in 50 mM borate buffer of pH 7.4. The total concentrations of $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ and hypochlorite were kept at 100 μ M.

Fig. S10. The absorption spectrum changes of $[Ru(bpy)_2(AN-bpy)](PF_6)_2$ (30 μ M) upon reaction with different concentrations (0.0, 10, 20, 30, 40, and 50 μ M) of HOCl in 50 mM borate buffer of pH 7.4.