Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supplementary file for Manuscript :

Designed synthesis of CO₂ promoted copper(II) coordination polymers: synthesis, structural, spectroscopic characterization and versatile functional property studies[†]

Pritam Ghosh,^a Additi Roychowdhury,^{ab} Montserrat Corbella,^c Asim Bhaumik,^d Partha Mitra,^d Shaikh M. Mobin,^eAyan Mukherjee,^f Soumen Basu,^f and Priyabrata Banerjee*^{ab}

Content	Page
Table (S1-S7)	2-5, 17
Fig S1-S12	6-15
UV-Vis spectroscopic studies	16-17

Selected bor	nd distance(Å)	Selected bo	ond angles (°)
Cu(1)-N(1)	1.994(3)	O(1)-Cu(1)-O(2)	90.31(10)
Cu(1)-N(2)	2.005(3)	O(1)-Cu(1)-O(3)	90.13(10)
Cu(1)-O(1)	1.980(3)	O(1)-Cu(1)-O(4)	77.79(10)
Cu(1)-O(2)	1.987(2)	O(1)-Cu(1)-N(1)	173.65(11)
Cu(1)-O(3)	2.309(3)	O(2)-Cu(1)-N(2)	175.78(11)
Cu(1)-O(4)	2.313(3)	O(1)-Cu(1)-N(2)	93.86(10)
C(12)-O(1)	1.265(4)	O(4)-Cu(1)-N(2)	94.42(10)
C(12_a)-O(4)	1.228(4)	N(1)-Cu(1)-N(2)	80.93(11)
C(12)-C(12_a)	1.569(5)	O(3)-Cu(1)-N(2)	103.16(10)
C(5)-C(6)	1.484(5)		
C(6)-C(7)	1.382(5)		
C(7)-C(8)	1.374(6)		
C(8)-C(9)	1.372(5)		
C(9)-C(10)	1.366(5)		
C(10)-N(2)	1.346(5)		
N(2)-C(6)	1.345(4)		
N(1)-C(5)	1.347(4)		

Table S1 Selected bond distances (Å) and angles (°) for $[Cu(bpy)(C_2O_4)]_n$ (1)

Table S2 Selected bond distances (Å) and angles (°) for ligand (L^1)

Selected bond distance(Å)			
C(6)-C(7)	1.527(3)	C(2)-C(3)	1.369(3)
C(7)-C(12)	1.380(3)	C(3)-C(4)	1.367(4)
C(12)-C(11)	1.387(3)	C(4)-C(5)	1.358(3)
C(11)-C(10)	1.368(3)	C(5)-N(1)	1.338(3)
C(10)-C(9)	1.385(3)	N(1)-C(1)	1.333(2)
C(9)-C(8)	1.379(3)	C(6)-N(3)	1.452(3)
C(8)-C(7)	1.385(3)	N(3)-C(13)	1.367(3)
C(6)-N(2)	1.440(3)	C(13)-C(14)	1.394(3)
N(2)-C(1)	1.375(2)	C(17)-N(4)	1.336(3)
C(1)-C(2)	1.391(3)	N(4)-C(13)	1.345(2)
Selected bond angles (°)			
N(2) -C(6)-C(7)	109.24(13)	N(2)-C(6)-N(3)	110.68(14)
N(3) -C(6)-C(7)	114.06(13)	C(1) - N(1) - C(5)	117.58(15)
C(1) - N(2) - C(6)	123.55(14)	C(13)-N(4)-C(17)	117.36(16)
C(6)-N(3)-C(13)	123.97(15)		

Selected bond	distances (Å)	Selected bo	ond angles (°)
Cu(1)-N(1)	2.0323(19)	O(1) -Cu(1) -O(2)	76.08(5)
$Cu(1)-N(1_a)$	2.0323(19)	O(1) - Cu(1) - N(1)	89.44(7)
Cu(1)-O(2)	2.3805(15)	$O(1) - Cu(1) - O(1_a)$	87.01(6)
$Cu(1)-O(2_a)$	2.3805(15)	$O(1) - Cu(1) - O(2_a)$	85.79(5)
$Cu(1)-O(1_a)$	1.9930(15)	$O(1) - Cu(1) - N(1_a)$	176.30(7)
Cu(1)-O(1)	1.9930(15)	O(2) - Cu(1) - N(1)	92.37(6)
N(1)-C(1)	1.348(4)	$O(1_a) - Cu(1) - O(2)$	85.79(5)
C(1)-C(2)	1.355(4)	$O(2) - Cu(1) - O(2_a)$	155.00(6)
C(2)-C(3)	1.388(4)	$O(2) - Cu(1) - N(1_a)$	104.68(6)
C(3)-C(4)	1.347(4)	$O(1_a) - Cu(1) - N(1)$	176.30(7)
C(4)-C(5)	1.405(3)	$O(2_a) - Cu(1) - N(1)$	104.68(6)
C(5)-N(1)	1.345(3)	$N(1) - Cu(1) - N(1_a)$	94.14(7)
C(5)-N(2)	1.339(3)	O(1_a)-Cu(1)-	76.08(5)
		O(2_a)	
O(1) -C(6)	1.254(2)	O(1_a) -Cu(1)-	89.44(7)
		N(1_a)	
O(2) -C(6_b)	1.241(3)	$O(2_a) - Cu(1) -$	92.37(6)
		N(1_a)	
C(6) -C(6_b)	1.568(3)		

Table S3 Selected bond distances (Å) and angles (°) for $[Cu(2-AMP)_2(C_2O_4)]_n$ (**2**)

Table S4 Selected bond distances (Å) and angles (°) for $[Cu(L^2)(Cl)]$ (3)

Selected bond distances (Å)			
Cu(1)-N(3)	2.007(7)	N(1)-C(5)	1.309(10)
Cu(1)-N(1)	2.005(6)	C(2)-C(3)	1.373(15)
Cu(1)-N(2)	2.075(6)	C(15)-C(20)	1.394(11)
Cu(1)-O(1)	2.344(5)	N(2)-C(7)	1.468(10)
Cu(1)-Cl(1)	2.255(2)	C(3)-C(4)	1.368(14)
O(1)-C(20)	1.377(10)	N(2)-C(14)	1.497(9)
N(1)-C(1)	1.348(11)	C(16)-C(17)	1.381(14)
C(1)-C(2)	1.373 (12)	C(17)-C(18)	1.348(16)
N(2)-C(6)	1.512(10)	C(18)-C(19)	1.403(15)
N(3)-C(13)	1.340(12)	C(19)-C(20)	1.350(13)
N(3)-C(9)	1.335(11)		
Selected bond angles (°)			
Cl(1)-Cu(1)-O(1)	95.43(15)	N(3)-Cu(1)-O(1)	92.1(3)
Cl(1)-Cu(1)-N(1)	93.18(19)	N(1)-Cu(1)-N(3)	170.1(3)
Cl(1)-Cu(1)-N(2)	174.37(18)	Cl(1)-Cu(1)-N(3)	92.0(2)
N(1)-Cu(1)-N(2)	82.0(2)	N(3)-Cu(1)-N(2)	92.3(3)
N(2)-Cu(1)-O(1)	88.0(2)	N(1)-Cu(1)-O(1)	95.8(2)

	1	1'	2	3	L1
Empirical	$C_{12}H_8CuN_2O_{4,}$	$C_{46}H_{38}CuN_2$	$C_{12}H_{12}CuN_4$	C ₂₀ H ₂₀ ClCuN ₃ O	$C_{17}H_{16}N_4$
Formula	2(H ₂ O)	P_2,ClO_4	O ₄		
Μ	343.79	843.72	339.81	417.39	276.34
Crystal	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
system					
Space	P-1(No. 2)	P 21/n(No.	C2/c (No.	C2/c (No. 15)	C2/c (No. 15)
group		14)	15)		
a(Å)	8.9254(18)	10.1166(10)	13.4876(14)	22.477(4)	8.887(8)
b(Å)	9.0881(18)	14.9515(14)	11.2653(12)	12.052(2)	17.728(15)
c(Å)	9.652(2)	26.557(3)	8.7010(9)	20.103(4)	18.635(16)
α (deg)	110.363(4)	90	90	90	90
β (deg)	97.535(4)	91.743(2)	93.755(2)	102.013(5)	90.707(12)
γ (deg)	105.761(4)	90	90	90	90
V(Å ³)	684.0(2)	4015.1(7)	1319.2(2)	5326.5(17)	2936(4)
Ζ	2	4	4	8	8
T(K)	293	150	293	293	293
λ (Μο Κα)	0.71073	0.71073	0.71073	0.71073	0.71073
$Dc (g cm^{-3})$	1.669	1.396	1.711	1.041	1.250
μ (mm ⁻¹)	1.626	0.737	1.678	0.930	0.077
Total data	6459	29280	6866	15481	10933
Unique	2417	6423	1171	4042	2813
Reflection					
Rint	0.028	0.056	0.024	0.064	0.032

Table S5 Crystallographic details of 1, 1', 2, 3 and L^1

Compound	C,H,N Analysis
1	Anal. Calcd for $C_{12}H_{12}N_2O_6Cu$: C, 41.88%
	; H, 3.49%; N, 8.14%. Found: C, 42. 05%;
	H, 3.36%; N,8.04%.
1'	Anal. Calcd for $C_{46}H_{38}CuN_2P_2$, ClO_4 : C,
	65.42%; H, 4.50%; N, 3.31%. Found: C,
	65.37%; H, 4.43%; N,3.41%.
2	Anal. Calcd for $C_{12}H_{12}N_4O_4Cu$:
	C, 42.38%; H, 3.53%, N, 16.48 %. Found:
	C, 42.28% ; H, 3.48%, N, 16.42% .
3	Anal. Calcd. for
	C ₂₀ H ₂₀ N ₃ OCuCl.(7H ₂ O):C, 44.16% ; H,
	6.25%; N, 7.73%. Found: C, 43.97%; H,
	5.97%; N, 7.62%.
4	Anal. Calcd for $C_{34}H_{34}N_7O_4Cu_2Cl_2$:
	C, 51.06% ; H, 4.25% ; N, 12.26%. Found:
	C, 50.95%; H, 4.30%; N, 12.39%.
L^1	Anal. Calcd for $C_{17}H_{16}N_4$:
	C, 73.82% ; H, 5.78% ; N, 20.26 %. Found:
	C, 73.91%; H, 5.9%; N, 20.17%.
L^2	Anal. Calcd for $C_{20}H_{21}N_3O$:
	C, 75.23%; H, 6.58%; N, 13.16%. Found:
	C, 75.25%; H, 6.59%; N, 13.17%.

Table S6 CHN analysis of 1, 1', 2, 3, 4, L^1 and L^2

Fig. S1 ORTEP of complex 1.

Fig. S2 ESI-MS spectrum of 1' in acetonitrile.

Fig. S3 ORTEP diagram of 1'.

Fig. S4 ORTEP of ligand L^1 .

Fig. S5 ORTEP of complex 2.

Fig. S6a ORTEP of complex 3.

 $[C_{20}H_{20}N_{3}OCuCl].(7H_{2}O)$ Mol. Wt.= 543.39 g/m ol

Fig. S6b TGA profile of complex $[Cu(L^2)(Cl)]$ ·7H₂O.

Fig. S7 FAB-MS spectrum of 4 (Inset: proposed molecular view of 4).

Fig. S8 ESI-MS spectrum of 4 (Inset: fragmented part at $m/z \sim 274$).

IR frequencies of $[Cu(bpy)(C_2O_4)]_n$ (1).

Characteristic IR Peaks (KBr disk, v, cm⁻¹): 1652(s), 1089(br), 1447(s), 773(s), 730(s), 626(s).

Fig. S9 IR spectrum of $[Cu(2-AMP)_2(C_2O_4)]_n$ (2).

Characteristic IR Peaks (KBr disk, v, cm⁻¹): 1664 (s), 1632 (s), 1594 (s), 1566 (s), 1497 (s), 1452 (s), 1311 (s), 1263 (s), 1167 (s), 796 (s), 763 (s).

Fig. S10 IR spectrum of $[Cu(L^2)(Cl)]$ (3). Characteristic IR Peaks (KBr disk, v, cm⁻¹) : 1609 (s), 1484 (s), 1450 (s), 1110 (s), 1031 (s), 767 (s).

IR frequencies of 4.

Characteristic IR Peaks (KBr disk, v, cm⁻¹): 1633 (s), 1609 (s), 1451 (s), 1157 (s), 1021 (s), 763 (s).

Fig. S11 IR spectrum of 1'.

Characteristic IR Peaks (KBr disk, v, cm⁻¹) : 488 (s), 514 (s), 622 (s), 695 (s), 747 (s), 1092 (s), 1437 (s), 1480 (s), 1593 (s); of which the peaks 1437, 1028 and 695 are bands coming due to PPh₃.

spectroscopic studies temperature UV-Visible

spectral studies of ultrasonicated complex **1** in DMF-MeOH (1:9) have shown that there are peaks at about 215, 245(sh) and 300 nm respectively (Fig. S12a, Table S7). Inset shows the absorption peak at about 700nm [assigned as d-d transition]^{ref1}.UV-Vis spectral studies of complex **2** in DMF solvent (after 10 minutes of ultrasonication) shows the characteristic peaks at 280,310 nm (Fig. S12b). We are unable to perform higher concentration UV-Visible study with this sample due to its low solubility and rapid degradation. The peaks (<300 nm) are assigned mostly as $\pi \rightarrow \pi^*$ electron transitions of pyridine N atoms and aromatic rings. The absorption peaks at 300 nm may be treated as $n \rightarrow \pi^*$ electronic transition of pyridine N atoms to C₂O₄oxygen atoms. Complex **3** is showing absorption peaks at 215, 260 and 600 nm (Fig. S12c). A structured absorption band (Fig. S12c inset) at 600 nm may be best described as laportte forbidden d_{xz}, d_{xy} \rightarrow d_z² transitions (very weak transition). Complex **4** shows charecteristic absorption peaks at 205,260 nm and 600 nm(inset) (Fig. S12d). The similar broad absorption band like **3** of very very low intensity is appeared at ~ 600 nm for complex **4**, can be attributed as laportte forbidden d_{xz}, d_{xy} \rightarrow d_z² transitions (Table S7).^{ref2}

UV-Vis spectrum, Fig. S12a Complex 1 in DMF-MeOH and Fig. S12b Complex 2 in DMF (after sonication for 10 mins) Fig. S12c Complex 3 in MeOH solvent and Fig. S12d Complex 4 in DMF-MeOH solvent.

Ref 1: K. D. Karlin, B. I. Cohen, J. C. Hayes, A. Farooq and J. Zubieta, Inorg. Chem. 1987, 26, 147.

Ref 2a: A.A. Holder, P. Taylor, A.R. Magnusen, E.T. Moffett, K. Meyer, Y. Hong, S.E. Ramsdale, M. Gordon, J.Stubbs, L.A. Seymour, D. Acharya, R.T. Weber, P.F. Smith, G. C. Dismukes, P. Ji, L. Menocal, F. Bai, J.L. Williams, D.M. Cropek and W.L. Jarrett, *Dalton Trans.*, 2013, **42**, 11881. Ref 2b: M-L Fu, D. Fenske, B. Weinert and O. Fuhr, *Eur. J. Inorg. Chem.*, 2010, 1098-1102.

Table S7 UV-Vis data analysis of Complex 1, 1', 2, 3, 4, L¹ and L²

Compound	UV-Visible data (λ_{max}/cm^{-1})
1	215, 245(sh), 300, 700
1'	240, 400
2	280, 310
3	215, 260, 600
4	205, 260, 600
L ¹	220(sh), 250, 290
L^2	210, 260, 320