Electronic Supplementary Information for

Structural Diversity and Photoluminescent Properties of Cadmium Thiophenedicarboxylate Coordination Polymers

Li-Ping Xue,[†] Xin-Hong Chang,[†] Shi-Hui Li, [†] Lu-Fang Ma,^{*,†} and Li-Ya Wang^{*,†,‡}

[†]College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, P. R. China. [‡]College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R.

China

Compound	1a	1b	2a	2b	3a	3b
Formula	$C_{26}H_{28}CdN_8O_{12}S_2\\$	$C_{26}H_{22}CdN_8O_8S_2$	$C_{16}H_{16}CdN_4O_4S$	$C_{16}H_{18}CdN_4O_5S$	$C_{17}H_{13}CdN_5O_5S$	$C_{17}H_{13}CdN_5O_5S$
$M_{\rm r}$	821.08	751.04	472.79	490.80	511.78	510.78
<i>T</i> (K)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal system	triclinic	monoclinic	monoclinic	monoclinic	Tetragonal	Tetragonal
Space group	<i>P</i> -1	C2/c	C2/c	C2/c	I–42d	I–42d
a (Å)	8.768(2)	21.534(6)	15.539(3)	16.714(6)	9.4730(11)	9.4643(12)
<i>b</i> (Å)	8.851(2)	8.764(3)	8.9486(15)	16.289(6)	9.4730(11)	9.4643(12)
<i>c</i> (Å)	12.344(3)	16.832(5)	13.056(2)	13.976(5)	42.894(10)	42.890(11)
α (°)	76.950(2)	90.00	90.00	90.00	90	90
β (°)	77.453(2)	106.950(4)	103.428(2)	95.587(3)	90	90
γ (°)	63.795(2)	90.00	90.00	90.00	90	90
$V(Å^3)$	829.7(3)	3038.6(15)	1765.9(5)	3787(2)	3849.2(11)	3841.8(12)
Ζ	1	4	4	8	8	8
$ ho({ m g~cm^{-3}})$	1.643	1.642	1.778	1.722	1.766	1.766
μ (mm ⁻¹)	0.857	0.918	1.385	1.299	1.284	1.286
F(000)	416	1512	944	1968	2032	2024
GOF (F^2)	1.034	1.031	1.033	1.037	1.253	1.107
$R_1^a[I \ge 2\sigma(I)]$	0.0285	0.0447	0.0196	0.0516	0.0330	0.0367
$wR_2^b[I \ge 2\sigma(I)]$	0.0716	0.1288	0.0492	0.1329	0.0890	0.0962
^{<i>a</i>} $R_1 = \sum F_o -$	$\left F_{c}\right /\sum\left F_{o}\right .^{b}wR_{2}=$	$= \{ \sum [w(F_o^2 - F_c^2)^2]$	$]/\sum [w(F_o^2)^2]\}^{1/2}$			

Table S1 Crystal data and structure refinements for 1a-3b

Tables S2 Selected Bond Distances (Å) and Angles (deg) for Complexes $1a-3b$	
	_

		Compound 1a ^{<i>a</i>}			
Cd(1)-O(1)	2.3584(19)	Cd(1)-N(1)	2.328(2)	Cd(1)-N(4)#2	2.325(2)
N(4)#2-Cd(1)-N(4)#3)	180.0	N(4)#2-Cd(1)-N(1)	91.83(7)	N(4)#3-Cd(1)-N(1)	88.17(7)
N(1)-Cd(1)-N(1)#4	180.00(11)	N(4)#2-Cd(1)-O(1)	90.61(7)	N(4)#3-Cd(1)-O(1)	89.39(7)
N(1)-Cd(1)-O(1)	91.61(7)	N(1)#4-Cd(1)-O(1)	88.39(7)	O(1)-Cd(1)-O(1) #4	180.0
^a Symmetry codes: #1 x+1,	y-1, z #2 x-1,	y+1, z #3 -x+1, -y+1, -z+1	1 #4 -x, -y+2,	-z+1	
		Compound $\mathbf{1b}^{b}$			
Cd(1)-O(1)	2.354(3)	Cd(1)-N(1)	2.338(4)	Cd(1)-N(4)#1	2.289(4)
N(4)#1-Cd(1)-N(4)#2	180.000(1)	N(4)#1-Cd(1)-N(1)	87.21(15)	N(4)#2-Cd(1)-N(1)	92.79(15)
N(1)-Cd(1)-N(1)#3	180.0	N(1)-Cd(1)-O(1)#3	95.43(15)	N(4)#1-Cd(1)-O(1)	88.66(16)
N(4)#2-Cd(1)-O(1)	91.34(16)	N(1)-Cd(1)-O(1)	84.57(15)	N(1)#3-Cd(1)-O(1)	84.57(15)
O(1)#3-Cd(1)-O(1)	180.00(9)				
^b Symmetry codes: #1 -x+	1/2, -y+1/2, -z	z+1 #2 x, y-1, z #3 -x+1/2	, -y-1/2, -z+1		
		Compound 2a ^c			
Cd(1)-N(2)	2.2547(16)	Cd(1)-O(2)	2.3914(14)	Cd(1)-O(1)	2.3986(13)
N(2)#1-Cd(1)-N(2)	180.00(13)	N(2)-Cd(1)-O(2)#1	89.62(6)	N(2)-Cd(1)-O(2)	90.38(6)
O(2)#1-Cd(1)-O(2)	180.00(7)	N(2)-Cd(1)-O(1)	88.98(5)	O(2)-Cd(1)-O(1)	55.08(4)
N(2)-Cd(1)-O(1)#1	91.02(5)	O(2)-Cd(1)-O(1)#1	124.92(4)	O(1)-Cd(1)-O(1)#1	180.00(8)
^c Symmetry codes: #1 -x+	l, -y, -z				
		Compound 2b ^d			
Cd(1)-O(1)	2.215(5)	Cd(1)-N(1)	2.251(5)	Cd(1)-O(2)	2.642(5)

Cd(1)-O(3)#2	2.462(6)	Cd(1)-O(4)#2	2.401(5)	Cd(1)-N(4)#1	2.233(6)
O(1)-Cd(1)-N(4)#1	123.1(2)	O(1)-Cd(1)-N(1)	119.7(2)	N(4)#1-Cd(1)-N(1)	100.8(2)
O(1)-Cd(1)-O(4)#2	95.80(19)	N(4)#1-Cd(1)-O(4)#2	124.7(2)	N(1)-Cd(1)-O(4)#2	89.29(19)
O(1)-Cd(1)-O(3)#2	91.74(19)	N(4)#1-Cd(1)-O(3)#2	84.70(19)	N(1)-Cd(1)-O(3)#2	135.0(2)
O(4)#2-Cd(1)-O(3)#2	53.72(19)	O(1)-Cd(1)-O(2)	53.23(16)	N(4)#1-Cd(1)-O(2)	92.95(19)
N(1)-Cd(1)-O(2)	89.03(17)	O(4)#2-Cd(1)-O(2)	141.92(18)	O(3)#2-Cd(1)-O(2)	135.68(18)
^d Symmetry codes: #1 -x+	-3/2, -y+1/2, -	z+1 #2 -x+1/2, -y+1/2, -z	z+1		
		Compound 3a ^e			
Cd(1)-O(1)#1	2.342(4)	Cd(1)-O(1)	2.342(4)	Cd(1)-N(3)#2	2.345(4)
Cd(1)-N(3)#3	2.345(4)	Cd(1)-N(1)	2.439(5)	Cd(1)–O(2)	2.517(4)
Cd(1)-O(2)#1	2.517(4)				
O(1)#1-Cd(1)-O(1)	83.76(19)	O(1)#-Cd(1)-N(3)#2	89.88(15)	O(1)-Cd(1)-N(3)#2	99.91(14)
O(1)#1-Cd(1)-N(3)#3	99.91(14)	O(1)-Cd(1)-N(3)#3	89.88(15)	N(3)#2-Cd(1)-N(3)#3	166.9(2)
O(1)#1-Cd(1)-N(1)	138.12(10)	O(1)-Cd(1)-N(1)	138.12(10)	N(3)#2-Cd(1)-N(1)	83.45(10)
N(3)#3-Cd(1)-N(1)	83.45(10)	O(1)#1-Cd(1)-O(2)	136.88(13)	O(1)-Cd(1)-O(2)	53.66(13)
N(3)#2-Cd(1)-O(2)	91.11(15)	N(3)#3-Cd(1)-O(2)	87.69(15)	N(1)-Cd(1)-O(2)	84.71(9)
O(1)#1-Cd(1)-O(2)#1	53.66(13)	O(1)-Cd(1)-O(2)#1	136.88(13)	N(3)#2-Cd(1)-O(2)#1	87.69(15)
N(3)#3-Cd(1)-O(2)#1	91.11(15)	N(1)-Cd(1)-O(2)#1	84.71(9)	O(2)-Cd(1)-O(2)#1	169.42(17)
^e Symmetry codes: #1 -x, -y+2, z #2 -x+1/2, y-1/2, -z+3/2 #3 -y+1/2,x+3/2,-z+3/2					
		Compound 3b ^f			
Cd1-O1#1	2.329(4)	Cd1-O1	2.329(4)	Cd1-N3#2	2.338(5)
Cd1-N3#3	2.338(5)	Cd1-N1	2.426(5)	Cd1-O2	2.562(6)
Cd1-O2#1	2.562(6)				
O1#1-Cd1-O1	83.8(2)	O1#1-Cd1-N3#2	88.68(17)	O1-Cd1-N3#2	100.31(17)
O1#1-Cd1-N3#3	100.31(17)	O1-Cd1-N3#3	88.68(17)	N3#2-Cd1-N3#3	168.0(2)
O1#1-Cd1-N1	138.09(11)	O1-Cd1-N1	138.09(11)	N3#2-Cd1-N1	83.99(12)
N3#3-Cd1-N1	83.99(12)	O1#1-Cd1-O2	135.68(15)	O1-Cd1-O2	52.81(15)
N3#2-Cd1-O2	90.5(2)	N3#3-Cd1-O2	88.6(2)	N1-Cd1-O2	85.72(11)
O1#1-Cd1-O2#1	52.81(15)	O1-Cd1-O2#1	135.68(15)	N3#2-Cd1-O2#1	88.6(2)
N3#3-Cd1-O2#1	90.5(2)	N1-Cd1-O2#1	85.72(11)	O2-Cd1-O2#1	171.4(2)
^f Symmetry codes: #1 -x,-	y+2,z #2 y-1/2	,-x+1/2,-z+3/2 #3 -y+1/2,x	+3/2,-z+3/2		

Fig. S1 PXRD patterns of 1a-3b simulated from X-ray single-crystal diffraction data (bottom) and experimental data (upper).

Fig. S2 TGA curves for complexes 1a–3b.