Electronic Supplementary Information

Versatile Redox Reactivity of triaryl-meso-substituted Ni(II) Porphyrin

Abdou K. D. Dimé, Charles H. Devillers,* Hélène Cattey and Dominique Lucas* Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France. E-mail: charles.devillers@u-bourgogne.fr; dominique.lucas@u-bourgogne.fr

Contents

Characterisation of 1-Ni, 1-Ni-Cl and 1-Ni-P ⁺ :	
-Characterisation of 1-Ni:	
¹ H NMR (Fig. 1 and Fig. 2)	S3-4
¹³ C NMR (Fig. 3 and Fig. 4)	S5-6
COSY NMR (Fig. 5 and Fig. 6)	S7-8
NOESY NMR (Fig. 7 and Fig. 8)	S9-10
HSQC NMR (Fig. 9 and Fig. 10)	S11-12
-Characterisation of 1-Ni-Cl:	
¹ H NMR (Fig. 11 and Fig. 12)	S13-14
¹³ C NMR (Fig. 13 and Fig. 14)	S15-16
COSY NMR (Fig. 15 and Fig. 16)	S17-18
NOESY NMR (Fig. 17 and Fig. 18)	S19-20
HSQC NMR (Fig. 19 and Fig. 20)	S21-22
MALDI-TOF MS of 1-Ni-Cl (Fig. 21)	S23
-Characterisation of 1-Ni-P ⁺ :	
¹ H NMR (Fig. 22 and Fig. 23)	S23-24
¹³ C NMR (Fig. 24 and Fig. 25)	S25-26
COSY NMR (Fig. 26 and Fig. 27)	S27-28
NOESY NMR (Fig. 28 and Fig. 29)	S29-30
HSQC NMR (Fig. 30 and Fig. 31)	S 31-32

³¹ P NMR (Fig. 32)	S33
MALDI-TOF MS of 1-Ni-P ⁺ (Fig. 33)	S33

Electrolysis of 1-Ni in DMF:	
Maldi-Tof mass spectrum of the crude solution after electrolysis (Fig. 34)	S34
RDE voltammetry before and after electrolysis (Fig. 35)	S34
UV-Vis absorption spectrum of the diluted crude solution (in CH ₂ Cl ₂)	
resulting from electrolysis of 1-Ni in DMF (Fig. 36)	S35
Chemical synthesis of 3-Ni and 2-Ni	S36
Characterisation of 3-Ni	
MALDI-TOF mass spectrum (Fig. 37)	S36
¹ H NMR in CDCl ₃ (Fig. 38 and Fig. 39)	S37
Characterisation of 2-Ni	
MALDI-TOF mass spectrum (Fig. 40)	S39
¹ H NMR in CD_2Cl_2 (Fig. 41 and Fig. 42)	S41
Chemical synthesis of 2'-Ni	S42
Characterisation of 2'-Ni	
Full (top) and partial (bottom) ¹ H NMR spectra of 2'Ni (Fig. 43)	S42
UV-vis. absorption spectrum of 2'-Ni in CH ₂ Cl ₂ (Fig. 44)	S43
MALDI-TOF mass spectrum of 2'-Ni (Fig. 45)	S44
Example of calculation of product's distribution from the ¹ H NMR spectrum	S44
of the crude obtained in the conditions of entry 2, Table 1 of the manuscript	
(CD ₂ Cl ₂ , 300 MHz, 300 K) (Fig. 46)	

Crystal and structure refinement data for 1-Ni, 1-Ni-Cl, 1-Ni-P⁺ and 3-Ni S47 (Table S1).

Fig. 2 Partial ¹H NMR spectrum of 1-Ni in CD₂Cl₂, 300 MHz, 300 K. δ (ppm) 2.67 (s, CH₃, 6H), 7.53 (d, ³J = 7.7 Hz, *m*-Tol, 4H), 7.66-7.76 (m, *m*-and *p*-Ph, 3H), 7.93 (d, ³J = 7.9 Hz, *o*-Tol, 4H), 8.01-8.05 (m, *o*-Ph, 2H), 8.77 (d, ³J = 4.9 Hz, β-Pyrr, 2H), 8.82 (d, ³J = 4.9 Hz, β-Pyrr, 2H), 8.92 (d, ³J = 4.8 Hz, β-Pyrr, 2H), 9.17 (d, ³J = 4.6 Hz, β-Pyrr, 2H), 9.88 (s, β-Pyrr, 1H).

(*): non attributed signals. These signals could be: l, m, n, o, p, q, u, r, and s (these 9 C are uncoupled with proton signals in the ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC experiment).

S8

Fig. 7 ¹H-¹H NOESY NMR spectrum of **1-Ni** in CD₂Cl₂, 300 MHz, 300 K.

Fig. 12 Partial ¹H NMR spectrum of **1-Ni-Cl** in CD₂Cl₂, 300 MHz, 300 K. δ (ppm) 2.65 (s, CH₃, 6H), 7,51 (d, ³J = 7.7 Hz, *m*-Tol, 4H), 7.64-7.74 (m, *m*-and *p*-Ph, 3H), 7,87 (d, ³J = 7.7 Hz, *o*-Tol, 4H), 7.96-8.00 (m, *o*-Ph, 2H), 8,69 (d, ³J = 5.0 Hz, β-Pyrr, 2H), 8.72 (d, ³J = 5.0 Hz, β-Pyrr, 2H), 8.82 (d, ³J = 5.0 Hz, β-Pyrr, 2H), 9.49 (d, ³J = 5.0 Hz, β-Pyrr, 2H).

Fig. 14 Partial ¹³C NMR spectrum of **1-Ni-Cl** in CD_2Cl_2 , 75 MHz, 300 K. (*): non attributed signals. These signals could be: l, m, n, o, p, q, u, r, and s (these 9 C are uncoupled with proton signals in the ¹H-¹³C HSQC experiment).

Fig. 21 MALDI-TOF mass spectrum of 1-Ni-Cl.

Fig. 22 ¹H NMR spectrum of 1-Ni-P⁺ in CD₂Cl₂, 300 MHz, 300 K.

Fig. 23 Partial ¹H NMR spectrum of **1-Ni-P**⁺ in CD₂Cl₂, 300 MHz, 300 K. δ (ppm) 2.58 (s, CH₃, 6H), 7.45 (d, ${}^{3}J = 7.7$ Hz, *m*-Tol, 4H), 7.71-7.86 (m, *m*-and *p*-Ph, *o*-Tol, 22H), 7.94-7.97 (m, *o*-Ph, 2H), 8.21 (d, ${}^{3}J = 5.3$ Hz, β-Pyrr, 2H), 8.43 (d, ${}^{3}J = 5.3$ Hz, β-Pyrr, 2H), 8.57 (d, ${}^{3}J = 5.0$ Hz, β-Pyrr, 2H), 8.67 (d, ${}^{3}J = 5.0$ Hz, β-Pyrr, 2H).

Fig. 25 Partial ¹³C NMR spectrum of **1-Ni-P**⁺ in CD₂Cl₂, 75 MHz, 300 K. (*): non attributed signals. These signals could be: a, b, c, d, e, f, k, l, m, n, o, p, q, u, r, s, t and v (these 19 C are uncoupled with proton signals in the ¹H-¹³C HSQC experiment).

Fig. 26 1 H- 1 H COSY NMR spectrum of **1-Ni-P** $^{+}$ in CD₂Cl₂, 300 MHz, 300 K.

Fig. 27 Partial ¹H-¹H COSY NMR spectrum of $1-Ni-P^+$ in CD₂Cl₂, 300 MHz, 300 K.

Fig. 28 1 H- 1 H NOESY NMR spectrum of 1-Ni-P⁺ in CD₂Cl₂, 300 MHz, 300 K.

S30

Fig. 30 1 H- 13 C HSQC NMR spectrum of **1-Ni-P**⁺ in CD₂Cl₂, 300 MHz, 300 K.

Fig. 31 Partial 1 H- 13 C HSQC NMR spectrum of **1-Ni-P**⁺ in CD₂Cl₂, 300 MHz, 300 K.

Fig. 33 MALDI-TOF mass spectrum of 1-Ni-P⁺.

Fig. 34 MALDI-TOF mass spectrum of a crude solution resulting from electrolysis of 1-Ni in DMF 0.1 TEAPF₆; $E_{app} = 1.10 \text{ V } vs. \text{ SCE}, -5.5 \text{ e}, 3 \text{ compartments}, working electrode: Pt spiral.}$

Fig. 35 RDE voltammograms before (black/solid line) and after (red/dashed line) electrolysis of 1-Ni in DMF containing 0.1 M TEAPF₆ in the conditions of Fig. 34 (WE: Pt, $\emptyset = 2 \text{ mm}$, 10 mV s⁻¹, $\omega = 500 \text{ rpm}$, [1-Ni] = $5.0 \times 10^{-4} \text{ M}$).

Fig. 36 UV-Vis absorption spectrum of the diluted crude solution (in CH_2Cl_2) resulting from electrolysis of **1-Ni** in DMF 0.1 TEAPF₆; $E_{app} = 1.10$ V vs. SCE, -5.5 e, 3 compartments, working electrode: Pt spiral.

Synthesis of 3-Ni

After dissolution of **1-Ni** (19.5 mg, 31.28 µmol) in 15 mL of dichloroethane, a mixture of AuCl₃ (10.1 mg, 33.3 µmol) and AgOTf (50.0 mg, 0.19 mmol) was added at room temperature under argon. The reaction mixture was stirred for 3 min and was quenched immediately with saturated NaHCO₃ aqueous solution (10 mL) and stirred for additional 5 min. The organic layer was washed with 4×250 ml of distilled water. After evaporation of the solvent, the crude product was purified by column chromatography on silica gel (CH₂Cl₂), affording **3-Ni** (17.5 mg, 14.11 µmol, 89.7% yield). λ_{max} (CH₂Cl₂)/nm (relative absorbance/ %) = 415 (100), 499 (64.64), 543 (67.55), 755 (52.24).

Synthesis of 2-Ni

1-Ni (30.0 mg, 48.12 μ mol) was dissolved in 15 mL of CHCl₃. 2.2 eq. of PIFA was then added and the reaction mixture was stirred for 15 min at room temperature. The solution was washed with 4×250 ml of distilled water. After evaporation of the solvent, the crude product was purified by column chromatography on silica gel (CH₂Cl₂), affording **2-Ni** (11.9 mg, 40% yield).

Fig. 37 MALDI-TOF mass spectrum of 3-Ni.

Fig. 39 Partial ¹H NMR spectrum of **3-Ni** in CDCl₃, 300 MHz, 300 K. δ (ppm) 2.64 (s, CH₃, 12H), 7.49 (m, ${}^{3}J = 7.7$ Hz, *m*-tol, 8H), 7.61-7.69 (m, *m*-and *p*-Ph, 6H), 7.83 (d, ${}^{3}J = 7.9$ Hz, *o*-tol, 8H), 7.86-7.96 (m, *o*-Ph, 4H), 8.28-8.41 (m, β-Pyrr, 8H), 8.69 (d, ${}^{3}J = 5.0$ Hz, β-Pyrr, 2H), 8.83 (s, β-Pyrr, 2H), 9.34 (d, ${}^{3}J = 5.0$ Hz, β-Pyrr, 2H).

Fig. 42 Partial ¹H NMR spectrum of **2-Ni** in CD₂Cl₂, 300 MHz, 300 K. δ (ppm) 2.57 (s, CH₃, 12H), 7.45 (d, ${}^{3}J = 7.3$ Hz, *m*-tol, 8H), 7.69-7.81 (m, *m*-and *p*-Ph, 6H), 7.90 (d, ${}^{3}J = 7.8$ Hz, *o*-tol, 8H), 8.04 (d, ${}^{3}J = 4.7$ Hz, β-Pyrr, 4H) 8.06-8.18 (m, *o*-Ph, 4H), 8.56 (d, ${}^{3}J = 4.9$ Hz, β-Pyrr, 4H), 8.81 (s, β-Pyrr, 8H).

Synthesis of 2'-Ni

2'-Ni was synthesized according to reference ¹. Despite all our effort, perfect purification of this compound by column chromatography (CH_2Cl_2/n -heptane 20/80) was impossible but its purity can be estimated higher than 80% by NMR spectroscopy.

Fig. 43 Full (top) and partial (bottom) ¹H NMR spectra of **2'Ni** in CDCl₃, 300 MHz, 300 K.

Fig. 44 UV-vis. absorption spectrum of 2'-Ni in CH₂Cl₂.

Fig. 45 MALDI-TOF mass spectrum (black) of 2'-Ni. The magnification shows in red color the simulated isotopic pattern for $C_{80}H_{54}N_8Ni_2$.

Fig. 46 ¹H NMR spectrum obtained for the crude obtained in the conditions of entry 2, Table 1 of the manuscript (CD₂Cl₂, 300 MHz, 300 K).

From this spectrum can be extracted the following data:

Relative amount of monomer units: For 1-Ni (signal at 9.13 ppm): 1.97/2 H = 0.99 molecule; for 2'-Ni (signal at 9.69 ppm): 0.27/1 H = 0.27 molecule but as it is a dimer this value has to be multiplied by 2 hence 0.54; for 1-NiCl (signal at 9.47 ppm): 0.39/2 H = 0.20 molecule; for

3-Ni (signal at 9.22 ppm): (2.11-0.27(integration of **2'-Ni**))/2 H = 0.92 molecule but as it is a dimer this value has to be multiplied by 2 hence 1.84; for **2-Ni** (signal at 8.56 ppm): 0.55/4 H = 0.14 molecule but as it is a dimer this value has to be multiplied by 2 hence 0.28. *Total amount of product*: 0.99 + 0.54 + 0.20 + 1.84 + 0.28 = 3.85.

Product's distribution: for 1-Ni: 0.99/3.85 = 25.7% (~ 26%); for 2'-Ni: 0.54/3.85 = 14.0%; for 1-NiCl: 0.20/3.85 = 5.2% (~ 5%); for 3-Ni: 1.84/3.85 = 47.8% (~ 48%); for 2-Ni: 0.28/3.85 = 7.3% (~ 7%).

	1 - Ni	1-Ni-Cl	1-Ni-P ⁺	3-Ni
Empirical formula	C40H28N4Ni	C ₄₀ H ₂₇ ClN ₄ Ni, C ₆ H ₁₄	C ₅₈ H ₄₂ N ₄ NiP ⁺ , PF ₆ ⁻	C ₈₀ H ₅₂ N ₈ Ni ₂ , 0.84(C ₅ H ₁₂), 3.16(CHCl ₃)
Formula weight	623.37	743.99	1029.61	1680.48
Temperature (K)	115(2)	115(2)	115(2)	115(2)
Crystal system	Orthorhombic	Triclinic	Triclinic	Triclinic
Space group	P212121	P-1	P-1	P-1
<i>a</i> (Å)	7.8292(4)	11.3951(3)	9.3136(4)	10.1031(7)
<i>b</i> (Å)	17.6253(10)	13.5257(5)	15.5847(6)	14.3045(11)
<i>c</i> (Å)	21.2086(11)	13.7389(5)	16.2590(7)	15.5350(11)
<i>a</i> (°)		109.812(1)	87.634(2)	102.530(2)
$\beta(^{\circ})$		106.495(2)	83.678(2)	108.384(2)
γ (°)		100.456(2)	84.350(2)	106.350(2)
Volume (Å ³)	2926.6(3)	1817.43(11)	2333.14(17)	1925.7(2)
Ζ	4	2	2	1
$\rho_{\text{calc.}}$ (g/cm ³)	1.415	1.360	1.466	1.449
μ (mm ⁻¹)	0.701	0.647	0.555	0.871
F(000)	1296	780	1060	852
Crystal size (mm ³)	0.10x0.10x0.02	0.175x0.15x0.15	0.10x0.07x0.05	0.15x0.15x0.10
$\frac{\sin(\theta)}{\lambda} \max(\dot{A}^{-1})$	0.65	0.65	0.65	0.65
Index ranges	-10<=h<=10	-14<=h<=14	-12<=h<=12	-13<=h<=13
	-22<=k<=22	-17<=k<=17	-18<=k<=20	-18<=k<=18
	-27<=l<=27	-17<=l<=17	-21<=l<=21	-20<=l<=20
Reflections collected	6511	15454	18462	56882
R _{int}	0.0560	0.0413	0.0747	0.0580
Reflections with $I \ge 2\sigma(I)$	5757	6505	7401	6441
Data / restraints / parameters	6511/0/408	8223 / 0 / 473	10535 / 0 / 643	8851/6/557
Final R indices	$R1^{a} = 0.0783,$	$R1^{a} = 0.0617,$	$R1^{a} = 0.1051,$	R1 = 0.0534,
$[I \ge 2\sigma(I)]$	$wR2^{b} = 0.1434$	$wR2^{b} = 0.1331$	$wR2^{b} = 0.2069$	wR2 = 0.1237
<i>R</i> indices (all data)	$R1^{a} = 0.0954,$	$R1^{a} = \overline{0.0844},$	$R1^{a} = \overline{0.1533},$	R1 = 0.0809,
	$wR2^{b} = 0.1532$	$wR2^{b} = 0.1470$	$wR2^{b} = 0.2303$	wR2 = 0.1334
Goodness-of-fit ^c on F^2	1.276	1.129	1.202	1.060
Absolute Structure Parameters	0.08(3)			
Largest difference	0.548	0.680	1.171	0.920
peak and hole (e Å ⁻³)	-0.502	-0.528	-0.554	-0.612
CCDC deposition no.	981910	981911	981912	981913

Table S1. Crystal and structure refinement data for 1-Ni, 1-Ni-Cl, 1-Ni-P⁺ and 3-Ni.

^a $R1=\Sigma(||F_0|-|F_c||)/\Sigma|F_0|$. ^b $wR2=[\Sigma w(F_0^2-F_c^2)^2/\Sigma[w(F_0^2)^2]^{1/2}$ where $w=1/[\sigma^2(Fo^2+(0.000P)^2+10.6092P]$ for **1-Ni**, $wR2=[\Sigma w(F_0^2-F_c^2)^2/\Sigma[w(F_0^2)^2]^{1/2}$ where $w=1/[\sigma^2(Fo^2+(0.0332P)^2+4.5084P]$ for **1-Ni-Cl**, $w=1/[\sigma^2(Fo^2+21.6158P]$ for **1-Ni-P**⁺, $w=1/[\sigma^2(Fo^2+(0.0654P)^2+1.1501P]$ for **3-Ni**. where $P=(Max(Fo^2.0)+2*Fc^2)/3$ ^c $S=[\Sigma w(F_0^2-F_c^2)^2/(n-p)]^{1/2}$ (n = number of reflections. p = number of parameters).

1. A. Tsuda, Y. Nakamura and A. Osuka, Chem. Commun., 2003, 1096.