ESI

TOPOTACTIC CONDENSATION OF LAYER SILICATES WITH FERRIERITE-TYPE LAYERS FORMING POROUS TECTOSILICATES

B. Marler,^{*a} Y. Wang,^b J. Song,^c and H. Gies^a

Results of the ¹³C CP NMR spectroscopy

Fig. S1: The ¹³C CP NMR spectra of RUB-20 (left), and RUB-36 (right) are displayed here as representatives of the monoclinic and orthorhombic materials, respectively. The chemical shift values of the signals of all HLSs are listed in Table 1.

Table S1: List of signals observed from ¹H-¹³C CPMAS NMR spectra of the layered RUB materials. The chemical shift values are listed together with the expected values as estimated from the molecular structure and charge of the cations.

Material	Cation	Observed Signals with chemical shift	Expected signals based on the molecular structure of the cation
RUB-20	$[N(CH_3)_4]^+$		1 signal at ca.
		57.0 ppm	57 ppm (methyl groups attached to N)
RUB-20b	$[\mathbf{N}(\mathbf{CH}_3)_4]^+$		1 signal at ca.
		57.4 ppm	57 ppm (methyl groups attached to N)
RUB-40	$[P(CH_3)_4]^+$	n.d.	1 signal at ca.
			10 ppm (methyl groups attached to P)
RUB-36	$[N(CH_3)_2(CH_2CH_3)_2]^+$		3 signals at ca.
		58.5	60 ppm (methylene groups attached to N)
		51.8 ppm	50 ppm (methyl groups attached to N)
		8.5	10 ppm (methyl groups attached to -CH ₂ -)
RUB-38	$[N(CH_3)_1(CH_2CH_3)_3]^+$		3 signals at ca.
		58 ppm	60 ppm (methylene groups attached to N)
		48 ppm	50 ppm (methyl group attached to N)
		9 ppm	10 ppm (methyl groups attached to -CH ₂ -)
RUB-48	$[N(CH_3)_3 \{CH(CH_3)_2\}_1]^+$		3 signals at ca.
		69.9 ppm	70 ppm (CH- group attached to N)
		51.3 ppm	50 ppm (methyl groups attached to N)
		17.2 ppm	15 ppm (methyl groups attached to -CH-)