Supporting Information

Aluminum Complexes with Bidentate Amido Ligands: Synthesis, Structure and Performance on Ligand-Initiated Ring-Opening Polymerization of *rac*-Lactide

Junpeng Liu and Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology; Shanghai 200237, P. R. China.

* Email: haiyanma@ecust.edu.cn; Tel. 021-64253519

	2b	3b
Formula	$C_{23}H_{35}AlN_2$	$C_{22}H_{31}AlN_2$
Formula weight	366.51	350.47
Temperature (K)	293(2)	293(2)
Crystal system	Monoclinic	Orthorhombic
Space group	P 21/c	P 21 21 21
<i>a</i> (Å)	10.075(3)	7.880(3)
<i>b</i> (Å)	17.439(6)	13.970(5)
<i>c</i> (Å)	13.495(5)	18.482(7)
α (°)	90	90
β (°)	105.666(4)	90
γ (°)	90	90
$V(\text{\AA}^3)$	2283.0(13)	2034.5(14)
Ζ	4	4
Density $(g \cdot cm^{-3})$	1.066	1.144
Absorp coeff/mm ⁻¹	0.097	0.106
F (000)	800	760
Data collected (hkl)	-12<=h<=12, -21<=k<=11,	−9<=h<=10, −16<=k<=17,
	-16<=1<=16	-22<=l<=23
θ range for data collection/ \circ	1.954 to 26.010	1.827 to 27.010
Max. and min. transmission	1 and 0.753	1 and 0.507
Data/restrains/parameters	4494 / 0 / 239	4339 / 0 / 230
Goodness-of-fit on F ²	0.902	0.936
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0453, wR2 = 0.1140	R1 = 0.0389, wR2 = 0.0919
<i>R</i> indices (all data)	R1 = 0.0898, wR2 = 0.1287	R1 = 0.0518, wR2 = 0.0972
Largest diff. peak and hole/e $Å^{-3}$	0.261 and -0.192	0.163 and -0.166

1. X-ray diffraction data of complexes 2b and 3b.

 Table S1.
 The crystal data and structure refinement for complexes 2b and 3b.

2. ¹H NMR and ¹³C NMR spectra of proligands 1a-1j and aluminum complexes 2b, 2d, 3a-3j.

Figure S1. The ¹H NMR spectrum of compound 1a (CDCl₃, 400 MHz).

Figure S10. The ¹³C NMR spectrum of compound **1e** (CDCl₃, 100 MHz).

Figure S14. The ¹³C NMR spectrum of compound **1g** (CDCl₃, 100 MHz).

Figure S18. The ¹³C NMR spectrum of compound **1i** (CDCl₃, 100 MHz).

Figure S19. The ¹H NMR spectrum of compound **1j** (CDCl₃, 400 MHz).

Figure S22. The ¹³C NMR spectrum of complex **2b** (CDCl₃, 100 MHz).

Figure S24. The ¹³C NMR spectrum of complex **2d** (CDCl₃, 100 MHz).

Figure S25. The ¹H NMR spectrum of complex 3a (CDCl₃, 400 MHz).

Figure S26. The ¹³C NMR spectrum of complex 3a (CDCl₃, 100 MHz).

Figure S28. The ¹³C NMR spectrum of complex **3b** (CDCl₃, 100 MHz).

Figure S31. The ¹H NMR spectrum of complex **3d** (CDCl₃, 400 MHz).

Figure S33. The ¹H NMR spectrum of complex 3e (CDCl₃, 400 MHz)

Figure S34. The ¹³C NMR spectrum of complex **3e** (CDCl₃, 100 MHz).

Figure S35. The ¹H NMR spectrum of complex **3f** (CDCl₃, 400 MHz).

Figure S36. The ¹³C NMR spectrum of complex **3f** (CDCl₃, 100 MHz).

Figure S37. ¹H NMR spectrum of complex **3g** (CDCl₃, 400 MHz). * The free ligand formed during the course of measurement.

Figure S38. The ¹³C NMR spectrum of complex 3g (CDCl₃, 100 MHz).

Figure S39. The ¹H NMR spectrum of complex **3h** (CDCl₃, 400 MHz).

Figure S40. The ¹³C NMR spectrum of complex **3h** (CDCl₃, 100 MHz).

Figure S41. The ¹H NMR spectrum of complex **3i** (CDCl₃, 400 MHz).

Figure S43. The ¹H NMR spectrum of complex **3j** (CDCl₃, 400 MHz). * The free ligand formed during the course of measurement.

Figure S44. The ¹³C NMR spectrum of complex 3j (CDCl₃, 100 MHz).

3. Representative GPC traces of the obtained PLA samples

Figure S45. GPC trace of isolated PLA prepared via ROP of *rac*-lactide by **3f**. Conditions: 100 equiv. of *rac*-lactide, 65 °C, toluene, 91% conversion, 18 h.

Figure S46. GPC trace of isolated PLA prepared via ROP of *rac*-lactide by **3c**. Conditions: 100 equiv. of *rac*-lactide, 65 °C, toluene, 92% conversion, 20 h.

Figure S47. GPC trace of isolated PLA prepared via ROP of *rac*-lactide by **3e**. Conditions: 100 equiv. of *rac*-lactide, 65 °C, toluene, 88% conversion, 15 h.

4. NMR studies of *rac*-LA oligomerization initiated by complex 3f

Figure S49. The ¹H NMR spetrum of the complex **3f** in C_6D_6 (400 MHz).

Figure S50. The ¹H NMR spetrum of the mixture of the complex **3f** and *rac*-LA ([**3f**]: [*rac*-LA] = 1 : 1.5) at room temperature (C₆D₆, 400 MHz; * free lactide monomer).

Figure S51. The ¹H NMR spetrum of the mixture of the complex **3f** and *rac*-LA ([**3f**]: [*rac*-LA] = 1:5) at room temperature (C_6D_6 , 400 MHz).

Figure S52. The ¹H NMR spetrum of the mixture of the complex 3f and *rac*-LA ([3f]: [*rac*-LA] = 1:5) at 65 °C after 50 min (C₆D₆, 400 MHz).

Figure S53. The comparison of ¹H NMR spetra of (a) ligand **1f**; (b) complex **3f**; (c) the reaction mixture of complex **3f** and *rac*-LA ([**3f**]: [*rac*-LA] = 1:1.5) at room temperature; (d): the reaction mixture of complex **3f** and *rac*-LA ([**3f**]: [*rac*-LA] = 1:5) at room temperature; (e) the reaction mixture of the complex **3f** and *rac*-LA ([**3f**]: [*rac*-LA] = 1:5) at 65 °C after 50 min (C₆D₆, 400 MHz).