Supporting Information for the manuscript

Semi-catalytic reduction of secondary amides to imines and aldehydes

S.H. Lee and G. I. Nikonov

Chemistry Department, Brock University, 500 Glenridge Ave., St. Catharines, ON, L2S 3A1 Canada. Email: <u>gnikonov@brocku.ca</u>

Experimental details. All manipulations were carried out using conventional high-vacuum or nitrogen-line Schlenk techniques. NMR spectra were recorded on a Bruker DPX-300 (¹H, 300 MHz; ¹³C, 75.4 MHz) and/or Bruker DPX-600 (¹H, 600 MHz; ¹³C, 150.8 MHz) spectrometers at 298 K. All chemicals were purchased from Sigma-Aldrich and Alfa Aesar apart from HSiMe₂Ph which was purchased from Gelest. These reagents were used without further purification. CDCl₃ and CD₂Cl₂ were purchased from Cambridge Isotope Laboratories. These NMR solvents were dried over CaH₂ prior to use. CH₂Cl₂, Et₂O and hexane were dried by using Grubbs-type solvent purification system supplied by Innovative Technology. Complex [Cp(*i*Pr₃P)Ru(CH₃CN)₂][PF₆]⁻ (1) was prepared according to literature procedures.¹

The synthesis of secondary amides and imidoyl chlorides

PhCONHCH₂Ph

To a solution of benzyl amine (20 mmol, 2.2 mL) in CH_2Cl_2 (30 mL) was added benzoyl chloride (20 mmol, 2.8 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum.

The product was washed with hexane (10 mL). Compound *N*-benzylbenzamide was obtained as a white powder after removal of hexane in vacuum. Yield 3.70 g (88%).

¹H NMR (Acetone-d₆): δ 8.23 (s, br, 1, PhCON*H*), 7.95 (d, J(H-H) = 6.97 Hz, 2, *Ph*), 7.46 (m, 3, *Ph*), 7.32 (m, 3, *Ph*), 7.24 (m, 1, *Ph*), 4.61 (d, J(H-H) = 5.97 Hz, 2, NHCH₂Ph).

PhCCl=NCH₂Ph

To a solution of *N*-benzylbenzamide in CH_2Cl_2 (15 mL) was added 1.1 eq. of distilled SOCl₂ and the reaction mixture was stirred for overnight at 70°C. Solvent was then removed in vacuum and the product was distilled under vacuum. Compound PhCCl=NCH₂Ph was obtained as orange-yellow oil. Yield 1.35 g (63 %).

¹H NMR (CH₂Cl₂): δ 7.10 (m, 10, *Ph*CCl=NCH₂*Ph*), 4.76 (s, 2, PhCCl=NCH₂Ph)

4-CH₃OPhCONHCH₂Ph

To a solution of benzyl amine (5 mmol, 0.84 mL) in CH_2Cl_2 (30 mL) was added 4methoxybenzoyl chloride (5 mmol, 0.85 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound *N*-benzyl-4methoxybenzamide was obtained as a white powder after removal of hexane in vacuum. Yield 0.97 g (85%).

¹H NMR (CH₂Cl₂): δ 7.92 (m, 1, *Ph*), 7.59 (d, J(H-H) = 7.94 Hz, 2, *Ph*), 7.20 (m, 3, *Ph*), 6.77 (m, 3, *Ph*), 6.33 (s, br, 1, PhCON*H*), 4.44 (d, J(H-H) = 5.81 Hz, 2, NHC*H*₂Ph), 3.69 (s, 3, *CH*₃OPh).

4-CH₃OPhCCl=NCH₂Ph

To a solution of *N*-benzyl-4-methoxybenzamide in CH_2Cl_2 (15 mL) was added 1.1 eq. of distilled SOCl₂ and the reaction mixture was stirred for overnight at 70°C. Solvent was then removed in vacuum and the product was distilled under vacuum. Compound 4-CH₃OPhCCl=NCH₂Ph was obtained as yellow oil. Yield 0.60 g (64 %).

¹H NMR (CH₂Cl₂): δ 7.93 (d, J(H-H) = 8.88 Hz, 2, 4-CH₃OPhCCl=NCH₂Ph), 7.29 (d, J(H-H) = 7.73 Hz, 2, 4-CH₃OPhCCl=NCH₂Ph(o)), 7.19 (t, J(H-H) = 7.41 Hz, 2, 4-

CH₃OPhCCl=NCH₂*Ph*(*m*)), 7.11 (t, J(H-H) = 7.41 Hz, 1, 4-CH₃OPhCCl=NCH₂*Ph*(*p*)), 6.79 (d, J(H-H) = 8.88 Hz, 2, 4-CH₃OPhCCl=NCH₂Ph), 4.78 (s, 2, 4-CH₃OPhCCl=NCH₂Ph), 3.71 (s, 3, 4-CH₃OPhCCl=NCH₂Ph).

^tBuCONHCH₂Ph

To a solution of benzyl amine (5 mmol, 0.84 mL) in CH_2Cl_2 (30 mL) was added trimethylacetyl chloride (5 mmol, 0.60 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound ^tBuCCONHCH₂Ph was obtained as a white powder after removal of hexane in vacuum. Yield 0.60 g (70%).

¹H NMR (CH₂Cl₂): δ 7.18 (m, 2, *Ph*), 7.11 (m, 3, *Ph*), 5.88 (s, br, 1, CON*H*), 4.24 (d, J(H-H) = 5.83 Hz, 2, NHC*H*₂Ph), 1305 (s, 9, (C*H*₃)₃COPh).

^tBuCCl=NCH₂Ph

To a solution of ^tBuCCONHCH₂Ph in CH₂Cl₂ (15 mL) was added 1.1 eq. of distilled SOCl₂ and the reaction mixture was stirred for overnight at 70°C. Solvent was then removed in vacuum and the product was distilled under vacuum. Compound ^tBuCCl=NCH₂Ph was obtained as white oil. Yield 1.20 g (60 %).

¹H NMR (CH₂Cl₂): δ 7.18 (m, 4, ^tBuCCl=NCH₂*Ph*), 7.09 (m, 1, ^tBuCCl=NCH₂*Ph*(*p*)), 4.55 (s, 2, ^tBuCCl=NCH₂Ph), 1.17 (s, 9, ^tBuCCl=NCH₂Ph).

CH₃CH₂CONHPh

To a solution of aniline (7.5 mmol, 0.70 mL) in CH_2Cl_2 (30 mL) was added propionyl chloride (7.5 mmol, 0.70 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound *N*-phenylpropionamide was obtained as a light yellow powder after removal of hexane in vacuum. Yield 0.60 g (47%).

¹H NMR (CH₂Cl₂): δ 7.35 (d, J(H-H) = 7.91 Hz, 2, *Ph*), 7.26 (s, br, 1, CON*H*), 7.15 (t, J(H-H) = 8.27 Hz, 2, *Ph*), 6.94 (t, J(H-H) = 7.55 Hz, 1, *Ph*), 2.19 (q, J(H-H) = 7.41 Hz, 2, CH₃CH₂CO), 1.05 (t, J(H-H) = 7.41 Hz, 3, CH₃CH₂CO).

CH₃CH₂CCl=NPh²

To a solution of $CH_3CH_2CONHPh$ in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound $CH_3CH_2CCl=NPh$ was obtained as transparent oil.

¹H NMR (CH₂Cl₂): δ 7.18 (t, J(H-H) = 7.77 Hz, 2, CH₃CH₂CCl=NPh(m)), 6.98 (t, J(H-H) = 7.41 Hz, 1, CH₃CH₂CCl=NPh(p)), 6.70 (d, J(H-H) = 7.41 Hz, 2, CH₃CH₂CCl=NPh(o)), 2.61 (q, J(H-H) = 7.57 Hz, 2, CH₃CH₂CCl=NPh), 1.13 (t, J(H-H) = 7.10 Hz, 3, CH₃CH₂CCl=NPh).

CH₃CH₂CONHPhCOCH₃

To a solution of 3-aminoacetophenone (7.5 mmol, 1.01 mg) in CH_2Cl_2 (30 mL) was added propionyl chloride (7.5 mmol, 0.70 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound *N*-(3acetylphenyl)propionamide was obtained as a light yellow powder after removal of hexane in vacuum. Yield 0.69 g (48%).

¹H NMR (CH₂Cl₂): δ 7.91 (s, 1, *Ph*), 7.71(d, J(H-H) = 7.90 Hz, 1, *Ph*), 7.58 (s, br, 1, CON*H*), 7.50(d, J(H-H) = 7.62 Hz, 1, *Ph*), 7.27 (t, J(H-H) = 7.90 Hz, 1, *Ph*), 2.42 (s, 3, COCH₃), 2.24 (q, J(H-H) = 7.39 Hz, 2, CH₃CH₂CO), 1.06 (t, J(H-H) = 7.39 Hz, 3, CH₃CH₂CO).

CH₃CH₂CCl=NPhCOCH₃²

To a solution of $CH_3CH_2CONHPhCOCH_3$ in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound $CH_3CH_2CCl=NPhCOCH_3$ was obtained as milky oil.

¹H NMR (CH₂Cl₂): δ 7.58 (d, J(H-H) = 8.10 Hz, 1, CH3CH₂CCl=N*Ph*COCH₃), 7.29 (m, 1, CH₃CH₂CCl=N*Ph*COCH₃), 7.28 (s, 1, CH₃CH₂CCl=N*Ph*COCH₃), 6.91 (d, J(H-H) = 8.10 Hz, 1, CH₃CH₂CCl=N*Ph*COCH₃), 2.64 (q, J(H-H) = 7.38 Hz, 2, CH₃CH₂CCl=N*Ph*COCH₃), 2.43 (s, 3, CH₃CH₂CCl=N*Ph*COCH₃), 1.15 (t, J(H-H) = 7.38 Hz, 3, CH₃CH₂CCl=N*Ph*COCH₃).

CH₃CH₂CONHPhCOOCH₂CH₃

To a solution of Ethyl-4-aminobenzoate (7.5 mmol, 1.24 mg) in CH_2Cl_2 (30 mL) was added propionyl chloride (7.5 mmol, 0.70 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound ethyl 4propionamidobenzoate was obtained as a white powder after removal of hexane in vacuum. Yield 0.74 g (45%).

¹H NMR (CH₂Cl₂): δ 7.81 (d, J(H-H) = 8.79 Hz, 2, *Ph*), 7.45 (d, J(H-H) = 8.79 Hz, 2, *Ph*), 7.34 (s, br, 1, CON*H*), 4.16 (q, J(H-H) = 6.75 Hz, 2, COOC*H*₂CH₃), 2.23 (q, J(H-H) = 7.39 Hz, 2, CH₃CH₂CO), 1.21 (t, J(H-H) = 7.01 Hz, 3, COOCH₂CH₃), 1.05 (t, J(H-H) = 7.66 Hz, 3, CH₃CH₂CO).

CH₃CH₂CCl=NPhCOOCH₂CH₃²

To a solution of $CH_3CH_2CONHPhCOOCH_2CH_3$ in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound $CH_3CH_2CCl=NPhCOOCH_2CH_3$ was obtained as pale yellow oil.

¹H NMR (CH₂Cl₂): δ 7.86 (d, J(H-H) = 8.78 Hz, 2, N*Ph*COOCH₂CH₃), 6.74 (d, J(H-H) = 8.01 Hz, 2, N*Ph*COOCH₂CH₃), 4.15 (q, J(H-H) = 7.19 Hz, 2, N*Ph*COOCH₂CH₃), 2.64 (q, J(H-H) = 7.14 Hz, 2, CH₃CH₂CCl=N), 1.20 (t, J(H-H) = 7.11 Hz, 3, N*Ph*COOCH₂CH₃), 1.14 (t, J(H-H) = 7.38 Hz, 3, CH₃CH₂CCl=N).

N-benzylthiophene-2-carboxamide

To a solution of benzyl amine (5 mmol, 0.84 mL) in CH_2Cl_2 (30 mL) was added thiophene-2carbonyl chloride (5 mmol, 0.73 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound *N*-benzylthiophene-2-carboxamide was obtained as a white powder after removal of hexane in vacuum. Yield 0.70 g (69%).

¹H NMR (CH₂Cl₂): δ 7.34 (m, 2, C₄H₃S and Ph), 7.19 (m, 4, Ph), 7.13 (m, 1, C₄H₃S), 6.93 (t, J(H-H) = 4.35 Hz, 1, C₄H₃S), 6.33 (s, br, 1, CONH), 4.42 (d, J(H-H) = 5.87 Hz, 2, CH₂Ph).

N-benzylthiophene-2-carbimidoyl chloride ²

To a solution of *N*-benzylthiophene-2-carboxamide in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound *N*-benzylthiophene-2-carbimidoyl chloride was obtained as transparent oil.

¹H NMR (CH₂Cl₂): δ 7.57 (d, J(H-H) = 3.88 Hz, 1, C₄H₃SCCl), 7.35 (m, 1, C₄H₃SCCl), 7.12 (m, 5, C₄H₃SCCl=NCH₂Ph), 6.93 (t, J(H-H) = 3.83 Hz, 1, C₄H₃SCCl), 4.72 (s, 2, C₄H₃SCCl=NCH₂Ph).

N-benzylfuran-2-carboxamide

To a solution of benzyl amine (5 mmol, 0.84 mL) in CH_2Cl_2 (30 mL) was added 2-furoyl chloride (5 mmol, 0.65 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound *N*-benzylfuran-2-carboxamide was obtained as a white powder after removal of hexane in vacuum. Yield 0.64 g (68%).

¹H NMR (CH₂Cl₂): δ 7.30 (d, J(H-H) = 1.02 Hz, 1, C₄H₃O), 7.19 (m, 5, *Ph*), 6.93 (d, J(H-H) = 3.37 Hz, 1, C₄H₃O), 6.60 (s, br, 1, CON*H*), 6.36 (m, 1, C₄H₃O), 4.41 (d, J(H-H) = 5.99 Hz, 2, CH₂Ph).

N-benzylfuran-2-carbimidoyl chloride ²

To a solution of *N*-benzylfuran-2-carboxamide in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound *N*-benzylthiophene-2-carbimidoyl chloride was obtained as transparent oil.

¹H NMR (CH₂Cl₂): δ 7.45 (m, 1, C₄H₃OCCl), 7.12 (m, 5, C₄H₃OCCl=NCH₂Ph), 7.00 (d, J(H-H) = 3.49 Hz, 1, C₄H₃OCCl), 6.39 (dd, J(H-H) = 3.85 and 1.99 Hz, 1, C₄H₃OCCl), 4.74 (s, 2, C₄H₃OCCl=NCH₂Ph).

N-benzylnicotinamide

To a solution of benzyl amine (5 mmol, 0.84 mL) in CH_2Cl_2 (30 mL) was added nicotinoyl chloride (5 mmol, 0.89 mg) and Et_3N (10 mmol, 1.02 mL). The reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The crude product was extracted with Et_2O (20 mL * 2). Compound *N*-

benzylnicotinamide was obtained as a white powder after removal of Et_2O in vacuum. Yield 0.60 g (57%).

¹H NMR (CH₂Cl₂): δ 11.84 (s, br, 1, CON*H*), 8.89 (d, J(H-H) = 1.83 Hz, 1, C₅*H*₄N), 8.52 (dd, J(H-H) = 1.47 and 4.72 Hz, 1, C₅*H*₄N), 8.00 (dt, J(H-H) = 2.15 and 7.72 Hz, 1, C₅*H*₄N), 7.21 (m, 5, *Ph*), 7.11 (m, 1, C₅*H*₄N), 4.45 (d, J(H-H) = 5.90 Hz, 2, C*H*₂Ph).

N-benzylnicotiniminoyl chloride ²

To a solution of *N*-benzylnicotinamide in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound *N*-benzylnicotiniminoyl chloride was obtained as slightly yellow oil.

¹H NMR (CH₂Cl₂): δ 9.11 (s, br, 1, C₅*H*(2)₄NCCl), 8.57 (d, J(H-H) = 4.10 Hz, 1, C₅*H*(6)₄NCCl), 8.37 (d, J(H-H) = 8.20 Hz, 1, C₅*H*(4) ₄NCCl), 7.41 (dd, J(H-H) = 7.70 and 2.21 Hz, 1, C₅*H*(5)₄NCCl), 7.19 (m, 4, CCl=NCH₂*Ph*), 7.12 (m, 1, CCl=NCH₂*Ph*), 4.80 (s, 2, CCl=NCH₂Ph).

PhCH=CHCONHCH₂Ph

To a solution of benzyl amine (5 mmol, 0.84 mL) in CH_2Cl_2 (30 mL) was added cinnamoyl chloride (5 mmol, 0.83 mg) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound *N*-benzylfuran-2-carboxamide was obtained as a white powder after removal of hexane in vacuum. Yield 0.90 g (81%).

¹H NMR (CH₂Cl₂): δ 7.43 (d, J(H-H) = 15.08 Hz, 1, PhCH=CH), 7.35 (m, 3, *Ph*), 7.17 (m, 7, *Ph*), 6.29 (d, J(H-H) = 15.64 Hz, 1, PhCH=CH), 5.99 (s, br, 1, CONH), 4.36 (d, J(H-H) = 5.84 Hz, 2, CH₂Ph).

PhCH=CHCCl=NCH₂Ph²

To a solution of PhCH=CHCONHCH₂Ph in CH_2Cl_2 was added 1 eq. of PCl₅ and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound PhCH=CHCCl=NCH₂Ph was obtained as a transparent oil.

¹H NMR (CH₂Cl₂): δ 7.59 (q, J(H-H) = 15.26 Hz, 2, PhCH=CHCCl), 7.19 (m, 10, *Ph*CH=CHCCl=NCH₂*Ph*), 4.83 (s, 2, PhCH=CHCCl=NCH₂Ph).

CH₃CH₂CONHPhCN

To a solution of 4-aminobenzonitrile (7.5 mmol, 0.89 mg) in CH_2Cl_2 (30 mL) was added propionyl chloride (7.5 mmol, 0.70 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound *N*-(4cyanophenyl)propionamide was obtained as a white powder after removal of hexane in vacuum. Yield 0.49 g (38%).

¹H NMR (CH₂Cl₂): δ 7.51 (d, J(H-H) = 8.81 Hz, 2, *Ph*), 7.44 (d, J(H-H) = 8.81 Hz, 2, *Ph*), 7.38 (s, br, 1, CON*H*), 2.24 (q, J(H-H) = 7.61 Hz, 2, CH₃CH₂CO), 1.05 (t, J(H-H) = 7.14 Hz, 3, CH₃CH₂CO).

CH₃CH₂CCl=NPhCN²

To a solution of $CH_3CH_2CONHPhCN$ in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound $CH_3CH_2CCl=NPhCN$ was obtained as yellow oil.

¹H NMR (CH₂Cl₂): δ 7.50 (d, J(H-H) = 8.64 Hz, 2, NPhCN), 6.78 (d, J(H-H) = 8.38 Hz, 2, NPhCN), 2.64 (q, J(H-H) = 7.30 Hz, 2, CH₃CH₂CCl), 1.14 (t, J(H-H) = 7.30 Hz, 3, CH₃CH₂CCl).

PhCH₂NHCOPhCN

To a solution of 4-cyanobenzoic acid (10 mmol, 1.66 g) in CH_2Cl_2 (50 mL) was added benzyl amine (10 mmol, 1.07 mL). The reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. Compound PhCH₂NHCOPhCN was obtained as a white powder. Yield 1.6 g (68%).

¹H NMR (CH₂Cl₂): δ 7.71 (d, J(H-H) = 8.45 Hz, 2, *Ph*), 7.56 (d, J(H-H) = 8.20 Hz, 2, *Ph*), 7.19 (m, 5, *Ph*), 6.50 (s, br, 1, CON*H*), 4.45 (d, J(H-H) = 5.75 Hz, 2, PhCH₂NH).

PhCH₂N=CClPhCN

To a solution of PhCH₂NHCOPhCN in CH₂Cl₂ (50 mL) was added 1 eq. of PCl₅ and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound PhCH₂N=CClPhCN was obtained as pale pink oil. Yield 1.3 g (75%).

¹H NMR (CH₂Cl₂): δ 7.57 (d, J(H-H) = 8.52 Hz, 2, *Ph*CH₂N), 7.13 (d, J(H-H) = 8.68 Hz, 2, *Ph*CH₂N), 6.76 (m, 4, N=CCl*Ph*CN), 6.68 (m, 1, *Ph*CH₂N), 4.35 (s, 2, NCH₂Ph).

C₆H₁₁NHCOPhCN

To a solution of 4-cyanobenzoic acid (10 mmol, 1.66 g) in CH_2Cl_2 (50 mL) was added cyclohexyl amine (11 mmol, 1.09 mL) and Et_3N (22 mmol, 2.2 mL). The reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. Then the solid was extracted with Et_2O . Compound $C_6H_{11}NHCOPhCN$ was obtained as a white powder after removal of Et_2O in vacuum. Yield 0.46 g (20%).

¹H NMR (CH₂Cl₂): δ 7.67 (d, J(H-H) = 7.99 Hz, 2, *Ph*), 7.57 (d, J(H-H) = 7.49 Hz, 2, *Ph*), 5.97 (s, br, 1, CON*H*), 3.77 (m, 1, C₆H₁₀*H*NHCO), 1.84 (d, J(H-H) = 11.27 Hz, 2, C₆H₁₀), 1.60 (m, 2, C₆H₁₀), 1.49 (m, 1, C₆H₁₀), 1.26 (m, 2, C₆H₁₀), 1.09 (m, 3, C₆H₁₀).

C₆H₁₁N=CClPhCN

To a solution of $C_6H_{11}NHCOPhCN$ in CH_2Cl_2 (50 mL) was added 1 eq. of PCl₅ and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound $C_6H_{11}N=CClPhCN$ was obtained as pale yellow powder. Yield 0.41 g (88%).

¹H NMR (CH₂Cl₂): δ 7.96 (d, J(H-H) = 8.85 Hz, 2, NC*Ph*CCl), 7.56 (d, J(H-H) = 8.85 Hz, 2, NC*Ph*CCl), 3.73 (m, 1, CCl=NCH), 1.15 (m, 10, CCl=NCHC₅H₁₀).

CH₃CH₂CONHPhNO₂

To a solution of 4-nitroaniline (7.5 mmol, 1.04 mg) in CH_2Cl_2 (30 mL) was added propionyl chloride (7.5 mmol, 0.70 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum.

The product was washed with hexane (10 mL). Compound *N*-(4-nitrophenyl)propionamide was obtained as a white powder after removal of hexane in vacuum. Yield 0.38 g (26%).

¹H NMR (CH₂Cl₂): δ 8.02 (d, J(H-H) = 9.07 Hz, 2, *Ph*), 7.56 (d, J(H-H) = 8.89 Hz, 2, *Ph*), 7.37 (s, br, 1, CON*H*), 2.27 (q, J(H-H) = 7.78 Hz, 2, CH₃CH₂CO), 1.07 (t, J(H-H) = 7.55 Hz, 3, CH₃CH₂CO).

CH₃CH₂CCl=NPhNO₂²

To a solution of $CH_3CH_2CONHPhNO_2$ in CH_2Cl_2 was added 1 eq. of PCl_5 and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound $CH_3CH_2CCl=NPhNO_2$ was obtained as yellow oil.

¹H NMR (CH₂Cl₂): δ 8.06 (d, J(H-H) = 8.85 Hz, 2, N*Ph*NO₂), 6.82 (d, J(H-H) = 8.85 Hz, 2, N*Ph*NO₂), 2.66 (q, J(H-H) = 7.17 Hz, 2, CH₃CH₂CCl), 1.15 (t, J(H-H) = 7.32 Hz, 3, CH₃CH₂CCl).

PhCONHPhCOCH₃

To a solution of 1-(3-aminophenyl)ethanone (15 mmol, 2.03 g) in CH_2Cl_2 (30 mL) was added benzoyl chloride (15 mmol, 2.11 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound PhCONHPhCOCH₃ was obtained as a white powder after removal of hexane in vacuum. Yield 1.96 g (55%).

¹H NMR (CH₂Cl₂): δ 8.01 (s, 1, NH*Ph*COCH₃), 7.93 (s, br, 1, CON*H*), 7.82 (dd, J(H-H) = 1.32 and 8.11 Hz, 1, NH*Ph*COCH₃), 7.72 (m, 2, NH*Ph*COCH₃), 7.56 (d, J(H-H) = 7.72 Hz, 1, *Ph*CONH), 7.36 (m, 4, *Ph*CONH), 2.43 (s, 3, PhCOCH₃).

PhCCl=NPhCOCH₃

To a solution of PhCONHPhCOCH₃ in CH₂Cl₂ (15 mL) was added 1.1 eq. of distilled SOCl₂ and the reaction mixture was stirred for overnight at 70°C. Solvent was then removed in vacuum and the product was distilled under vacuum. Compound PhCCl=NPhCOCH₃ was obtained as orange-yellow oil. Yield 1.60 g (42 %).

¹H NMR (CH₂Cl₂): δ 7.96 (d, J(H-H) = 9.07 Hz, 2, *Ph*(*o*)CCl=N), 7.58 (d, J(H-H) = 7.83 Hz, 1, N*Ph*COCH₃), 7.28 (m, 5, *Ph*(*m*, *p*)CCl=N*Ph*COCH₃), 7.00 (d, J(H-H) = 7.41 Hz, 1, N*Ph*COCH₃), 2.40 (s, 3, NPhCOCH₃).

PhCONHPhCOOCH₂CH₃

To a solution of ethyl-4-aminobenzoate (15 mmol, 2.43 g) in CH_2Cl_2 (30 mL) was added benzoyl chloride (15 mmol, 2.11 mL) and the reaction mixture was stirred overnight at ambient temperature. The mixture was then filtered and the solvent of filtrate was removed in vacuum. The product was washed with hexane (10 mL). Compound PhCONHPhCOOCH₂CH₃ was obtained as a white powder after removal of hexane in vacuum. Yield 2.21 g (55%).

¹H NMR (CH₂Cl₂): δ 7.89 (s, br, 1, CON*H*), 7.87 (d, J(H-H) = 8.53 Hz, NH*Ph*CO), 7.70 (d, J(H-H) = 7.17Hz, 2, *Ph*CONH), 7.58 (d, J(H-H) = 8.53 Hz, NH*Ph*CO), 7.38 (m, 3, *Ph*CONH), 4.17 (q, J(H-H) = 7.26 Hz, 2, PhCOOCH₂CH₃), 1.22 (t, J(H-H) = 7.26 Hz, 3, PhCOOCH₂CH₃).

PhCCl=NPhCOOCH₂CH₃²

To a solution of PhCONHPhCOOCH₂CH₃ in CH_2Cl_2 was added 1 eq. of PCl₅ and the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed in vacuum and compound PhCCl=NPhCOOCH₂CH₃ was obtained as beige oil.

¹H NMR (CH₂Cl₂): δ 7.98 (d, J(H-H) = 7.71 Hz, 2, *Ph*(*o*)CCl=N), 7.90 (d, J(H-H) = 8.69 Hz, 2, N*Ph*COOCH₂CH₃), 7.40 (m, 1, *Ph*(*p*)CCl=N), 7.32 (m, 2, *Ph*(*m*)CCl=N), 6.86 (d, J(H-H) = 8.63 Hz, 2, N*Ph*COOCH₂CH₃), 4.14 (q, J(H-H) = 7.19 Hz, 2, N*Ph*COOCH₂CH₃), 1.18 (t, J(H-H) = 7.19 Hz, 3, N*Ph*COOCH₂CH₃).

3-(trifluoromethyl)-N-isopropyl benzamide

To a solution of 3-trifluoromethyl benzoyl chloride (10 mmol, 2.0 mL) and Et_3N (10 mmol, 1.01 mL) in Et_2O (100 mL) was slowly added isopropyl amine (12 mmol, 0.7 mL). The reaction mixture was stirred overnight at ambient temperature. The solvent was removed in vacuum and the product was washed with hexane (30 mL). Compound 3-(trifluoromethyl)-*N*-isopropyl benzamide was obtained as a white powder after removal of hexane in vacuum. Yield 1.94 g (85%).

¹H NMR (CDCl₃): δ 8.01 (s, 1, CF₃*Ph*), 7.94 (d, J(H-H) = 8.09 Hz, 1, CF₃*Ph*), 7.75 (d, J(H-H) = 7.75 Hz, 1, CF₃*Ph*), 7.56 (t, J(H-H) = 7.75 Hz, 1, CF₃*Ph*), 5.97 (s, br, 1, CON*H*), 4.33 (sep, J(H-H) = 6.69 Hz, 1, C*H*(CH₃)₂), 1.29 (d, J(H-H) = 6.60 Hz, 6, CH(CH₃)₂).

3-CF₃PhCCl=NCH(CH₃)₂

A solution of 3-(trifluoromethyl)-*N*-isopropyl benzamide in distilled $SOCl_2$ was refluxed for 2 hours. Solvent was then removed in vacuum and the product was dried under vacuum. Compound 3-CF₃PhCCl=NHCH(CH₃)₂ was obtained as white oil. Yield 1.90 g (90%).

¹H NMR (CH₂Cl₂): δ 8.12 (s, 1, 3-CF₃*Ph*(2)CCl), 8.03 (d, J(H-H) = 8.05 Hz, 1, 3-CF₃*Ph*(4)CCl), 7.56 (d, J(H-H) = 7.71 Hz, 1, 3-CF₃*Ph*(6)CCl), 7.43 (m, 1, 3-CF₃*Ph*(5)CCl), 4.02 (sep, J(H-H) = 6.65 Hz, 1, Cl=NCH(CH₃)₃), 1.12 (d, J(H-H) = 6.39 Hz, 6, Cl=NCH(CH₃)₂).

4-Chloro-N-isopropyl benzamide

To a solution of 4-chlorobenzoyl chloride (10 mmol, 1.75 mL) and Et_3N (10 mmol, 1.01 mL) in Et_2O (100 mL) was slowly added isopropyl amine (12 mmol, 0.7 mL). The reaction mixture was stirred overnight at ambient temperature. The solvent was removed in vacuum and the product was washed with hexane (30 mL). Compound 4-Chloro-*N*-isopropyl benzamide was obtained as a white powder after removal of hexane in vacuum. Yield 0.75 g (38%).

¹H NMR (CDCl₃): δ 7.69 (d, J(H-H) = 8.60 Hz, 2, Cl*Ph*), 7.40 (d, J(H-H) = 8.60 Hz, 2, Cl*Ph*), 5.87 (s, br, 1, CON*H*), 4.30 (sep, J(H-H) = 6.61 Hz, 1, C*H*(CH₃)₂), 1.27 (d, J(H-H) = 6.61 Hz, 6, CH(CH₃)₂).

4-CIPhCCl=NCH(CH₃)₂

To a solution of 4-Chloro-*N*-isopropyl benzamide in CH_2Cl_2 was added 1 eq. of PCl₅ and the reaction mixture was stirred for overnight at room temperature. Solvent was then removed in vacuum and compound 4-ClPhCCl=NCH(CH₃)₂ was obtained as yellow oil. Yield 0.60g (79%).

¹H NMR (CH₂Cl₂): δ 7.77 (d, J(H-H) = 8.84 Hz, 2, 4-Cl*Ph*(*m*)CCl), 7.23 (d, J(H-H) = 8.47 Hz, 2, 4-Cl*Ph*(*o*)CCl), 3.98 (sep, J(H-H) = 6.26 Hz, 1, Cl=NCH(CH₃)₂), 1.10 (d, J(H-H) = 6.08 Hz, 6, Cl=NCH(CH₃)₂).

4-CH₃OOCPhCONHCH(CH₃)₂

To a solution of methyl-4-(chlorocarbonyl)benzoate (7 mmol, 1.4 g) and Et₃N (8 mmol, 0.81 mL) in Et₂O (100 mL) was slowly added isopropyl amine (8 mmol, 0.48 mL). The reaction mixture was stirred overnight at ambient temperature. The solvent was removed in vacuum and the product was washed with hexane (30 mL). Compound 4-CH₃OOCPhCONHCH(CH₃)₂ was obtained as a pale yellow powder after removal of hexane in vacuum. Yield 1.2 g (77%).

¹H NMR (CH₂Cl₂): δ 7.92 (d, J(H-H) = 8.01 Hz, 2, CH₃OPh), 7.64 (d, J(H-H) = 8.45 Hz, 2, CH₃OPh), 5.87 (s, br, 1, CONH), 4.07 (sep, J(H-H) = 6.75 Hz, 1, CH(CH₃)₂), 3.77 (s, 3, CH₃OPh), 1.10 (d, J(H-H) = 6.62 Hz, 6, CH(CH₃)₂).

4-CH₃OOCPhCCl=NCH(CH₃)₂

To a solution of 4-CH₃OOCPhCONHCH(CH₃)₂ in CH₂Cl₂ was added 1 eq. of PCl₅ and the reaction mixture was stirred for overnight at room temperature. Solvent was then removed in vacuum and compound 4-CH₃OOCPhCCl=NCH(CH₃)₂ was obtained as light yellow powder. Yield 1.27g (98%).

¹H NMR (CH₂Cl₂): δ 7.94 (m, 4, 4-CH₃OOC*Ph*CCl), 4.18 (sep, J(H-H) = 6.08 Hz, 1, Cl=NC*H*(CH₃)₂), 3.78 (s, 3, 4-CH₃OOCPhCCl), 1.24 (d, J(H-H) = 6.26 Hz, 6, CNCH(CH₃)₂).

Reduction of imidoyl chlorides to imines (NMR scale)

PhCH=NCH₂Ph

In a representative procedure, to a solution of $HSiMe_2Ph$ (145.0 µL, 1.04 mmol) and $PhCCl=NCH_2Ph$ (150.0 mg, 0.69 mmol) in CD_2Cl_2 was added a solution of $[CpRu(PPr_3^i)(CH_3CN)_2]PF_6$ (20 mg, 0.034 mmol) and t-BuCN (15 µL, 0.17 mmol) in CD_2Cl_2 . The reaction was periodically monitored by NMR spectroscopy. PhCH=NCH₂Ph was obtained as a product.

PhCH=NCH₂Ph

¹H NMR (CDCl₃): δ 8.44 (s, 1, PhCH=NCH₂Ph), 7.39 (m, 10, *Ph*CH=NCH2*Ph*), 4.88 (s, 2, PhCH=NCH₂Ph). ¹H-¹³C HSQC (CD₂Cl₂): δ 162.1 (s, PhCH=NCH₂Ph), 127.05, 130.82 (s, *Ph*CH=NCH2*Ph*), 65.4 (s, PhCH=NCH₂Ph).

^tBuCH=NCH₂Ph

¹H NMR (CDCl₃): δ 7.69 (s, 1, (CH₃)₃CH=NCH₂Ph), 7.26 (m, 5, (CH₃)₃CH=NCH₂Ph), 4.61 (s, 2, (CH₃)₃CH=NCH₂Ph), 1.15 (s, 1, (CH₃)₃CH=NCH₂Ph). ¹H-¹³C HSQC (CD₂Cl₂): δ 173.5 (s, (CH₃)₃CH=NCH₂Ph), 126.8, 127.6, 128.4 (s, (CH₃)₃CH=NCH₂Ph), 64.5 (s, (CH₃)₃CH=NCH₂Ph), 27.0 (s, (CH₃)₃CH=NCH₂Ph).

4-CH₃OPhCH=NCH₂Ph

¹H NMR (CH₂Cl₂): δ 7.54 (d, J(H-H) = 8.83 Hz, 2, CH₃OPh), 7.06 (m, 2, CH₂Ph), 6.97 (m, 3, CH₂Ph), 6.67 (d, J(H-H) = 8.88 Hz, 2, CH₃OPh), 4.59 (s, 2, CH₂), 3.67 (s, 3, OCH₃).

PhCH=NPhCOCH₃

¹H NMR (CDCl₃): δ 8.52 (s, 1, PhCH=NPhCOCH₃), 7.27 (m, 9, *Ph*CH=N*Ph*COCH₃), 2.66 (s, 3, PhCH=NPhCOCH₃). ¹H-¹³C HSQC (CD₂Cl₂): δ 26.8 (s, PhCH=NPhCOCH₃), 161.4 (s, PhCH=NPhCOCH₃).

CH₃CH₂CH=NPhCOCH₃

¹H NMR (CH₂Cl₂): δ 7.74 (t, 1, CH), 7.38 (m, 2, NPhCOCH₃), 7.17 (m, 2, NPhCOCH₃), 2.42 (s, 3, OCH₃), 2.22 (m, 2, CH₃CH₂), 1.02 (t, 3, CH₃CH₂).

CH₃CH₂CH=NPhCOOCH₂CH₃

¹H NMR (CH₂Cl₂): δ 7.81 (d, J(H-H) = 9.11 Hz, 2, *Ph*), 7.69 (t, 1, *CH*), 6.83 (d, J(H-H) = 9.11 Hz, 2, *Ph*), 4.14 (m, 2, OCH₂CH₃), 2.27 (m, 2, CHCH₂CH₃), 1,21 (m, 3, OCH₂CH₃), 1.01 (t, 3, CHCH₂CH₃).

CH₃CH₂CH=NPh

¹H NMR (CH₂Cl₂): δ 7.69 (t, 1, CH), 7.38 (m, 2, NPh), 6.98 (t, 1, NPh), 6.82 (d, J(H-H) = 6.96 Hz, 2, NPh), 2.25 (m, 2, CH₃CH₂), 1.01 (t, 3, CH₃CH₂).

3-CF₃PhCH=NCH(CH₃)₂

¹H NMR (CH₂Cl₂): δ 8.38 (s, 1, 3-CF₃PhC*H*=N), 8.07 (s, 1, 3-CF₃*Ph*), 7.95 (d, J(H-H) = 7.53 Hz, 1, 3-CF₃*Ph*), 7.72 (m, 1, 3-CF₃*Ph*), 7.56 (m, 1, 3-CF₃*Ph*), 3.61 (m, 1, CH₃C*H*CH₃), 1.30 (s, 3, CH₃CHCH₃), 1.28 (s, 3, CH₃CHCH₃).

4-ClPhCH=NCH(CH₃)₂

¹H NMR (CH₂Cl₂): δ 8.11 (s, 1, 4-ClPhC*H*=N), 7.72 (m, 1, 3-CF₃*Ph*), 7.56 (m, 1, 3-CF₃*Ph*), 7.51 (d, J(H-H) = 8.75 Hz, 2, 4-Cl*Ph*), 7.23 (d, J(H-H) = 8.23 Hz, 2, 4-Cl*Ph*), 3.38 (m, 1, CH₃C*H*CH₃), 1.09 (s, 3, CH₃CHCH₃), 1.07 (s, 3, CH₃CHCH₃).

Isolation of imines (Preparative scale)

PhCH=NCH₂Ph

In a representative procedure, to a mixture solution of PhCH=NCH₂Ph and ClSiMe₂Ph in hexane was added 1 eq. of 2 M HCl in Et₂O. The precipitate was then dissolved in Et₂O and 1.2 eq. of Et₃N was added. The solution was filtered and the filtrate was dried under vacuum. Compound PhCH=NCH₂Ph was obtained as yellow oil. Yield 0.42 g (43 %).

¹H NMR (CDCl₃): δ 8.44 (s, 1, PhCH=NCH₂Ph), 7.39 (m, 10, *Ph*CH=NCH2*Ph*), 4.88 (s, 2, PhCH=NCH₂Ph). ¹H-¹³C HSQC (CD₂Cl₂): δ 162.1 (s, PhCH=NCH₂Ph), 127.05-130.82 (s, *Ph*CH=NCH2*Ph*), 65.4 (s, PhCH=NCH₂Ph). IR (neat): υ (C=N) =1025 cm⁻¹.

t-BuCH=NCH₂Ph

To a mixture solution of $(CH_3)_3CH=NCH_2Ph$ and $ClSiMe_2Ph$ in hexane was added 1 eq. of 2 M HCl in Et₂O. The precipitate was then dissolved in Et₂O and 2 eq. of Et₃N was added. The solution was filtered and the filtrate was dried under vacuum. Compound $(CH_3)_3CH=NCH_2Ph$ was obtained as pale green oil. Yield 0.15 g (57 %).

¹H NMR (CDCl₃): δ 7.69 (s, 1, (CH₃)₃CH=NCH₂Ph), 7.26 (m, 5, (CH₃)₃CH=NCH₂Ph), 4.61 (s, 2, (CH₃)₃CH=NCH₂Ph), 1.15 (s, 1, (CH₃)₃CH=NCH₂Ph). ¹H-¹³C HSQC (CD₂Cl₂): δ 64.5 (s, 1)

(CH₃)₃CH=NCH₂Ph), 27.0 (s, (CH₃)₃CH=NCH₂Ph), 173.5 (s, (CH₃)₃CH=NCH₂Ph), 128.4, 127.6, 126.8 (s, (CH₃)₃CH=NCH₂Ph), IR (neat): v (C=N) =1029 cm⁻¹.

PhCH=NPhCOCH₃

To a mixture solution of PhCH=NPhCOCH₃ and ClSiMe₂Ph in hexane was added 1 eq. of 2 M HCl in Et₂O. The precipitate was then dissolved in Et₂O and 1.2 eq. of Et₃N was added. The solution was filtered and the filtrated was dried under vacuum. Compound PhCH=NPhCOCH₃ was obtained as yellow oil. Yield 0.114 g (40 %).

¹H NMR (CDCl₃): δ 8.52 (s, 1, PhC*H*=NPhCOCH₃), 7.27 (m, 9, *Ph*CH=N*Ph*COCH₃), 2.66 (s, 3, PhCH=NPhCOCH₃). ¹H-¹³C HSQC (CD₂Cl₂): δ 26.8 (s, PhCH=NPhCOCH₃), 161.4 (s, PhCH=NPhCOCH₃), IR (neat): υ (C=N) =1074 cm⁻¹.

Reduction of imidoyl chlorides to aldehydes

3-CF₃PhCCl=NCH(CH₃)₂

After the reaction was completed, the catalyst was removed by extracting with hexane. Then the mixture of $3-CF_3PhCH=NCH(CH_3)_2$ and $ClSiMe_2Ph$ was hydrolysed by adding H₂O/HCl. The $3-CF_3PhCHO$ and PhMe₂SiOSiMe₂Ph were then extracted with CH₂Cl₂ and the solution was dried over MgSO₄. The $3-CF_3PhCHO$ was isolated by chromatography over silica using 15:1 hexane : ethyl acetate as eluent to afford the product as a white oil. (89 mg, 64% yield).

3-CF₃PhCHO

¹H NMR (CH₂Cl₂): δ 10.02 (s, 1, PhC*H*O), 8.10 (s, 1, CF₃*Ph*(2)), 8.03 (d, J(H-H) = 8.15 Hz, 1, CF₃*Ph*(4)), 7.84 (d, J(H-H) = 8.15 Hz, 1, CF₃*Ph*(6)), 7.64 (t, J(H-H) = 7.72 Hz, 1, CF₃*Ph*(5)). ¹⁹F NMR (CDCl₃): δ -62.94 (s, 1, 3-CF₃PhCHO). ¹H-¹³C HSQC (CDCl₃): δ 186.3 (Ph*C*HO) 132.4 (CF₃*Ph*(4)), 131.0 (CF₃*Ph*(6)), 129.7 (CF₃*Ph*(5)), 126.5 (CF₃*Ph*(2)).

N-benzylthiophene-2-carbimidoyl chloride

100% conversion was achieved in 4 h and a mixture of products was obtained. After the reaction was completed, the catalyst was removed by extracting with hexane. Then the mixture was

hydrolysed by adding H_2O/HCl , extracted with CH_2Cl_2 and the solution was dried over MgSO₄. The CH_2Cl_2 solution contains PhMe₂SiOSiMe₂Ph but does not contain the corresponding aldehyde. The H_2O solution does not contain the aldehyde either.

4-ClPhCCl=NCH(CH₃)₂

After the reaction was completed, the catalyst was removed by extracting with hexane. Then the mixture of 4-ClPhCH=NCH(CH₃)₂ and ClSiMe₂Ph was hydrolysed by adding H₂O/HCl. The 4-ClPhCHO and PhMe₂SiOSiMe₂Ph were then extracted with CH₂Cl₂ and the solution was dried over MgSO₄. The 4-ClPhCHO was isolated by chromatography over silica using 20:1 hexane : ethyl acetate as eluent to afford the product as a white solid. (71 mg, 51% yield).

4-ClPhCHO

¹H NMR (CH₂Cl₂): δ 9.86 (s, 1, PhCHO), 7.70 (d, J(H-H) = 8.35 Hz, 2, Cl*Ph*(*m*)), 7.41 (d, J(H-H) = 8.35 Hz, 2, Cl*Ph*(*m*)). ¹³C NMR (CH₂Cl₂): δ 190.4 (PhCHO) 140.5 (4-Cl*Ph*(4)), 134.7 (4-Cl*Ph*(1)), 130.7 (4-Cl*Ph*(3,5)), 129.2 (4-Cl*Ph*(2,6)).

4-(CH₃)₂NPhCCl=NCH(CH₃)₂

100% conversion was achieved in 4 h and a mixture of products was obtained. After the reaction was completed, the catalyst was removed by extracting with hexane. Then the mixture was hydrolysed by adding H_2O/HCl , extracted with CH_2Cl_2 and the solution was dried over MgSO₄. The CH_2Cl_2 solution contains PhMe₂SiOSiMe₂Ph but does not contain the corresponding aldehyde.

4-CH₃OOCPhCCl=NCH(CH₃)₂

After the reaction was completed, the catalyst was removed by extracting with hexane. Then the mixture of 4-CH₃OOCPhCH=NCH(CH₃)₂ and ClSiMe₂Ph was hydrolysed by adding H₂O/HCl. The 4-CH₃OOCPhCHO and PhMe₂SiOSiMe₂Ph were then extracted with CH₂Cl₂ and the solution was dried over MgSO₄. The 4-CH₃OOCPhCHO was isolated by chromatography over silica using 15:1 hexane : ethyl acetate as eluent to afford the product as a white powder. (75 mg, 46% yield).

4-CH₃OOCPhCHO

¹H NMR (CH₂Cl₂): δ 9.96 (s, 1, PhCHO), 8.05 (d, J(H-H) = 8.15 Hz, 2, 4-CH₃OOCPh), 7.81 (d, J(H-H) = 8.15 Hz, 2, 4-CH₃OOCPh), 3.81 (s, 3, 4-CH₃OOCPh). ¹H-¹³C HSQC (CH₂Cl₂): δ 191.5 (PhCHO), 129.9 (4-CH₃OOCPh), 129.1 (4-CH₃OOCPh), 52.3 (4-CH₃OOCPh).

¹ A. L. Osipov, D. V. Gutsulyak, L. G. Kuzmina, J. A. K. Howard, D. A. Lemenovskii, G. Suss-Fink, G. I. Nikonov, *J. Organomet. Chem.*, **2007**, *692*, 5081.

² The yields of some viscous iminoyl chlorides that are difficult to weigh are not provided.