Electronic Supplementary Information (ESI) for Dalton. Trans.

A simple BODIPY-aniline-based fluorescent chemosensor as

multiple logic operations for the detection of pH and CO₂ gas

Zhong-Hua Pan^a, Geng-Geng Luo^{a,b*}, Jing-Wei Zhou^c, Jiu-Xu Xia^a, Kai Fang^a, Rui-Bo Wu^c

^aCollege of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China ^cSchool of Pharmaceutical Sciences, East Campus, Sun Yat-sen University, Guangzhou 510006, P. R. China

Electronic Supplementary Information (ESI)

Table of Contents	Page
Table S1 Crystallographic data for 1•CH ₂ Cl ₂ , 1 and 3······	·····S2
Table S2 Selected bond lengths, bond angles and dihedral angles of	of 1•CH₂Cl₂, 1 and
3	
S3	
Table S3 Percentage contribution from individual intermolecular in	nteractions to the
Hirshfeld surface of $1 \cdot CH_2 CI_2$, 1 and 3	······S3
Fig. S1 Solid-state IR spectrum of 1	······S4
Fig. S2 Molecular structures and space-filling projections show	ving the packing
arrangement of 1•CH ₂ Cl ₂ and 1·····	······S4
Fig. S3 Hirshfeld surface analyses and 2D fingerprint plots for 1-CH ₂ CI	₂, 1 and 3 ⋯S5
Fig. S4 Absorption, excitation and emission spectra of 1 in several solv	ents····S6
Fig. S5 The simulated absorption spectra of 1, 1-H ⁺ and 3 obtained from	m TDDFT⋯S7
Fig. S6 ESI-MS and its simulated isotope pattern of the protonated spe	cies of 1…S8

BODIPY	1•CH ₂ Cl ₂ (orange)	1 (deep red)	3 (orange red)
formula	$C_{20}H_{22}BF_2CI_2N_3$	$C_{19}H_{20}BF_2N_3$	$C_{19}H_{19}BF_2N_2$
formula weight	424.12	339.19	324.17
crystal system	triclinic	monoclinic	monoclinic
space group	<i>P</i> ī	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n
<i>a</i> (Å)	6.9723(7)	10.8093(4)	11.9007(5)
b (Å)	11.1202(14)	11.5942(4)	7.0792(4)
c (Å)	14.3071(16)	14.0953(4)	19.4220(4)
α (deg)	96.362(4)	90.00	90.00
β (deg)	102.577(3)	104.6620(10)	99.6390(10)
γ (deg)	108.094(2)	90.00	90.00
$Z, D_{calcd}(g m^{-3})$	2, 1.395	4, 1.318	4, 1.335
V (Å ³)	1009.9(2)	1708.97(10)	1613.15(10)
µ (mm ⁻¹)	0.350	0.093	0.094
F (000)	440	712	680
<i>Т</i> (К)	173(2)	173(2)	173(2)
no. of refins collected	7977	13119	20783
no. of unique reflns.	3543 (<i>R</i> _{int} =	2993 (<i>R</i> _{int} =	3167 (<i>R</i> _{int} =
	0.0693)	0.0426)	0.0479)
no. of observed refins	1700	2064	2210
parameters	254	227	218
R indices	R ₁ = 0.0725,	R ₁ = 0.0653,	R ₁ = 0.0705,
$[1 > 2\sigma(1)]^{a,b}$	<i>w</i> R ₂ = 0.1800	<i>w</i> R ₂ = 0.1788	<i>w</i> R ₂ = 0.2075
R indices	R ₁ = 0.1357,	R ₁ = 0.0974,	R ₁ = 0.0932,
all data	<i>w</i> R ₂ = 0.2375	<i>w</i> R ₂ = 0.2401	<i>w</i> R ₂ = 0.2590
GOF	1.134	1.186	1.195
Max., min electron	0.424, -0.437	0.454, -0.464	0.423, -0.405
Density (e Å-3)			

Table S1 Crystallographic data for $1 \cdot CH_2CI_2$, 1 and 3.

 ${}^{a}R_{1} = \Sigma | |F_{o}| - |F_{c}| | / \Sigma |F_{o}|, {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

1•CH ₂ Cl ₂		1		3	
Bond le	ngths	Bond lengths		Bond lengths	
B1-F1	1.390(5)	B1-F1	1.391(4)	B1-F1	1.393(4)
B1-F2	1.390(6)	B1-F2	1.418(4)	B1-F2	1.390(4)
B1-N1	1.540(6)	B1-N1	1.536(5)	B1-N1	1.536(4)
B1-N2	1.528(6)	B1-N2	1.520(5)	B1-N2	1.543(4)
N1-C12	1.345(5)	N1-C12	1.352(4)	N1-C12	1.346(4)
N1-C15	1.409(5)	N1-C15	1.406(4)	N1-C15	1.406(3)
N2-C11	1.355(5)	N2-C11	1.354(4)	N2-C11	1.354(3)
N2-C8	1.417(5)	N2-C8	1.411(4)	N2-C8	1.412(3)
N3-C1	1.394(4)	N3-C1	1.395(4)		
Bond angles	ond angles Bond angle		Bond angles		6
F1-B1-F2	108.5(4)	F1-B1-F2	107.9(3)	F1-B1-F2	109.7(3)
F1-B1-N2	110.4(4)	F1-B1-N2	112.5(3)	F1-B1-N2	109.6(2)
F2-B1-N2	110.0(4)	F2-B1-N2	108.9(3)	F2-B1-N2	110.1(2)
F1-B1-N1	110.2(4)	F1-B1-N1	110.5(3)	F1-B1-N1	110.2(2)
F2-B1-N1	110.3(4)	F2-B1-N1	109.3(3)	F2-B1-N1	109.5(2)
N1-B1-N2	110.1(3)	N1-B1-N2	107.6(3)	N1-B1-N2	107.7(2)

Table S2 Selected bond lengths, bond angles and dihedral angles of $1 \cdot CH_2CI_2$, 1 and 3.

Table S3 Percentage contribution from individual intermolecular interactions to theHirshfeld surface of $1 \cdot CH_2CI_2$, 1 and 3.

	H…F	н…н	C…C	H…C	H…Cl
1•CH ₂ Cl ₂	13.7	53.0	1.4	17.1	9.2
1	11.9	63.2	0.9	16.9	0
3	16.9	59.5	2.0	18	0

Fig. S1 Solid-state IR spectrum of 1.

Fig. S2 Molecular structures (top) and space-filling projections (bottom) showing the packing arrangement of $1 \cdot CH_2CI_2$ (a) and 1(b). The CH_2CI_2 molecule (green) in $1 \cdot CH_2CI_2$ are found to reside within voids, which are marked as dotted red circles.

(b)

(c)

Fig. S3 Crystal packing for (a) $1 \cdot CH_2Cl_2$, (b) **1**, and (c) **3**, showing the Hirshfeld surfaces of the central molecules mapped with d_{norm} (left) and the 2D fingerprint plots showing the

distribution of the d_e distances as a function of d_i (right). The most significant intermolecular interactions are: (a) N-H•••F hydrogen bonds (①), C-H••• π interactions (②), and C-H•••Cl interactions (③); (b) N-H•••F hydrogen bonds (①), and C-H••• π interactions (②); (c) C-H•••F hydrogen bonds (①), C-H••• π interactions (②).

(a)

(b)

Fig. S5 TDDFT stick spectra of **1** (top), 1-H⁺ (middle) and **3** (bottom) calculated at the B3LYP/6-31+G(d) level. Also shown are the UV-visible absorption spectra of **1**, 1-H⁺ and

3 recorded in CH₃OH.

(a)

Fig. S6 The experimental ESI-MS (a) and its simulated isotope pattern (b) showing the presence of the protonated species of **1**.