Supplementary Information:

Figure S-1: related to Experimental Section.

The results are affected by the concentration of the PIPES buffer, Figure S-1. These effects are attributed to complex formation between the Co^{II} central ion and the sulfate or sulfonate anions, which affects the binding of the peroxide ligands.

Figure S-1: Dependence of k_{obs}, of first reaction observed, on [Co(ClO₄)₂].

Solutions composition: \blacksquare 7.5×10⁻⁴ M H₂O₂. pH 6.5, PIPES 1.00×10⁻¹ M. Ionic strength 5.5×10⁻¹ M controlled by adding NaClO₄. \blacklozenge 7.5×10⁻⁴ M H₂O₂. pH 6.5, PIPES 5.0×10⁻² M. Ionic strength 4.75×10⁻¹ M controlled by adding NaClO₄.

The data for Figure S-1 are summed up in table S-1

Table S-1: kobs as	a function	of [Co(ClO ₄) ₂]	at two PIPES	concentrations
--------------------	------------	--	--------------	----------------

C _{(Co(ClO4)2)} M	k _{obs} s⁻¹ 0.050M PIPES	k _{obs} s⁻¹ 0.10M PIPES
0.010	9.99	7.34
0.013	8.81	5.19
0.015	7.49	4.07
0.020	6.44	3.04
0.025	5.29	2.58

Figure S-2 related to Experimental methods.

The results presented in Figure S-2, show that the kinetics of the reactions are affected by $[SO_4^{2-}]$, therefore all the results presented are for $Co(ClO_4)_2$. Ionic strength doesn't affect the observed rate constants, Figure S-2.

Figure S-2: Dependence of kobs on CNa2SO4.

Solutions composition: 1.5×10^{-2} M Co(ClO₄)₂, 1.5×10^{-1} M H₂O₂. In pH 6.5, HEPES buffer (4-(2-Hydroxyethyl)piperazine-1-ethaesulfonic acid sodium salt) 1.0×10^{-1} M, ionic strength for and 3.7×10⁻¹M, controlled by adding NaClO₄.

The data for Figure S-2 are summed up in table S-2

Table S-2: k_{obs} as a function of C_{Na2SO4}:

C _{Na2SO4} M	k _{obs} s ⁻¹
0.000	53.5
0.015	55.6
0.030	72.9
0.045	93.0
0.060	112
0.075	137

C _{H2O2} M	k _{obs} s ⁻¹
0.0750	7.84
0.105	10.2
0.150	11.9
0.200	14.4
0.240	15.7

Table S-3: k_{obs} as a function of C_{H2O2} (data for figure 1):

Table S-4: k_{obs} as a function of $C_{Co(ClO4)2}$ (data for figure 2):

C Co(ClO4)2 M	k _{obs} s ⁻¹
0.0100	7.34
0.0125	5.19
0.0150	4.07
0.0200	3.04
0.0250	2.58

Table S-5: k_{obs} as a function of C_{H2O2} (data for figure 3):

C _{H2O2} M	k _{obs} s ⁻¹
0.075	0.37
0.105	0.45
0.150	0.53
0.200	0.62
0.240	0.78

Table S-6: k_{obs} as a function of $C_{Co(CIO4)2}$ (data for figure 4):

C _{Co(ClO4)2} M	k _{obs} s⁻¹
0.0125	0.46
0.0150	0.37
0.0200	0.31
0.0250	0.28

Figure S-3 related to DFT calculations, reaction (10).

Figure S-3: The three plausible species a, b, c that can be formed in reactions S(1), S(2), S(3) respectively.

Reactions S(1) – **S(3)** related to DFT calculations, reaction (10). S(1) $\text{Co}(\text{H}_2\text{O})_6^{2+} + \text{OOH}^- \rightarrow \text{Co}(\text{H}_2\text{O})_5\text{OOH}^+ + \text{H}_2\text{O} \quad \Delta \text{G} = -15.18 \text{ kcal/mol}$ S(2) $\text{Co}(\text{H}_2\text{O})_6^{2+} + \text{OOH}^- \rightarrow \text{Co}(\text{H}_2\text{O})_5(\text{OO}^{2-}) + \text{H}_3\text{O}^+ \quad \Delta \text{G} = -6.72 \text{ kcal/mol}$ S(3) $\text{Co}(\text{H}_2\text{O})_6^{2+} + \text{OOH}^- \rightarrow \text{Co}(\text{H}_2\text{O})_4\text{OO}(\text{triangle}) + \text{H}_3\text{O}^+ + \text{H}_2\text{O} \quad \Delta \text{G} = 4.49 \text{ kcal/mol}$