Supplementary Information:

Figure S-1: related to Experimental Section.
The results are affected by the concentration of the PIPES buffer, Figure S-1. These effects are attributed to complex formation between the $\mathrm{Co}^{\mathrm{II}}$ central ion and the sulfate or sulfonate anions, which affects the binding of the peroxide ligands.

Figure S-1: Dependence of $\mathrm{k}_{\text {obs }}$, of first reaction observed, on $\left[\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2}\right]$.
Solutions composition: $\square 7.5 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2} . \mathrm{pH} 6.5$, PIPES $1.00 \times 10^{-1} \mathrm{M}$. Ionic strength 5.5×10^{-1} M controlled by adding $\mathrm{NaClO}_{4} . \diamond 7.5 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2} . \mathrm{pH} 6.5$, PIPES $5.0 \times 10^{-2} \mathrm{M}$. Ionic strength $4.75 \times 10^{-1} \mathrm{M}$ controlled by adding NaClO_{4}.

The data for Figure S-1 are summed up in table S-1
Table S-1: $\mathbf{k}_{\text {obs }}$ as a function of $\left[\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2}\right]$ at two PIPES concentrations

$\mathrm{C}_{(\text {Co(ClO4)2) }} \mathrm{M}$	$\mathrm{k}_{\text {obs }} \mathrm{s}^{-1}$ 0.050 M PIPES	$\mathrm{k}_{\text {obs }} \mathrm{s}^{-1}$ 0.10 M PIPES
0.010	9.99	7.34
0.013	8.81	5.19
0.015	7.49	4.07
0.020	6.44	3.04
0.025	5.29	2.58

Figure S-2 related to Experimental methods.
The results presented in Figure S-2, show that the kinetics of the reactions are affected by [$\mathrm{SO}_{4}{ }^{2-}$], therefore all the results presented are for $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2}$. Ionic strength doesn't affect the observed rate constants, Figure S-2.

Figure S-2: Dependence of $\mathbf{k}_{\text {obs }}$ on $\mathbf{C}_{\mathrm{Na} 2 \mathrm{SO} 4} \cdot$
Solutions composition: $1.5 \times 10^{-2} \mathrm{M} \mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2}, 1.5 \times 10^{-1} \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$. In pH 6.5, HEPES buffer (4-(2-
Hydroxyethyl)piperazine-1-ethaesulfonic acid sodium salt) $1.0 \times 10^{-1} \mathrm{M}$, ionic strength for and
$3.7 \times 10^{-1} \mathrm{M}$, controlled by adding NaClO_{4}.
The data for Figure S-2 are summed up in table S-2
Table S-2: $\mathbf{k}_{\text {obs }}$ as a function of $\mathbf{C}_{\text {Na2SO4: }}$:

$\mathrm{C}_{\mathrm{Na} 2 \mathrm{SO} 4} \mathrm{M}$	$\mathrm{k}_{\mathrm{obs}} \mathrm{s}^{-1}$
0.000	53.5
0.015	55.6
0.030	72.9
0.045	93.0
0.060	112
0.075	137

Table S-3: $\mathbf{k}_{\mathrm{obs}}$ as a function of $\mathrm{C}_{\mathrm{H} 2 \mathrm{O} 2}$ (data for figure 1):

$\mathrm{C}_{\mathrm{H} 2 \mathrm{O} 2} \mathrm{M}$	$\mathrm{k}_{\text {obs }} \mathrm{s}^{-1}$
0.0750	7.84
0.105	10.2
0.150	11.9
0.200	14.4
0.240	15.7

Table S-4: $\mathbf{k}_{\text {obs }}$ as a function of $\mathrm{C}_{\mathrm{Co}_{(\mathrm{ClO}}(\mathrm{C}) 2}$ (data for figure 2):

$\mathrm{C}_{\mathrm{Co(ClO4)2}} \mathrm{M}$	$\mathrm{k}_{\mathrm{obs}} \mathrm{s}^{-1}$
0.0100	7.34
0.0125	5.19
0.0150	4.07
0.0200	3.04
0.0250	2.58

Table S-5: $k_{\text {obs }}$ as a function of $\mathbf{C}_{\mathbf{H 2 O 2}}$ (data for figure 3):

$\mathrm{C}_{\mathrm{H} 2 \mathrm{O} 2} \mathrm{M}$	$\mathrm{k}_{\text {obs }} \mathrm{s}^{-1}$
0.075	0.37
0.105	0.45
0.150	0.53
0.200	0.62
0.240	0.78

Table S-6: $\mathrm{k}_{\text {obs }}$ as a function of $\mathrm{C}_{\mathrm{Co}_{\text {(ClO4)2 }}}$ (data for figure 4):

$\mathrm{C}_{\mathrm{Co(ClO4)2}} \mathrm{M}$	$\mathrm{K}_{\text {obs }} \mathrm{s}^{-1}$
0.0125	0.46
0.0150	0.37
0.0200	0.31
0.0250	0.28

Figure S-3 related to DFT calculations, reaction (10).

$\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Co} \text { " }-\mathrm{O}-\mathrm{O}-\mathrm{H}$	$\begin{gathered} \mathrm{b} \\ \left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Co}^{\prime} \end{gathered}$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$		
$\Delta \mathrm{G}=-15.18 \mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{G}=-6.72 \mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{G}=4.49 \mathrm{kcal} / \mathrm{mol}$		

Figure S-3: The three plausible species a, b, c that can be formed in reactions $\mathbf{S}(1), \mathbf{S}(2)$, S(3) respectively.

Reactions $\mathbf{S}(1)-\mathbf{S}(\mathbf{3})$ related to DFT calculations, reaction (10).
$\mathrm{S}(1) \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+\mathrm{OOH}^{-} \rightarrow \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OOH}^{+}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{G}=-15.18 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{S}(2) \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+\mathrm{OOH}^{-} \rightarrow \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{OO}^{2-}\right)+\mathrm{H}_{3} \mathrm{O}^{+} \Delta \mathrm{G}=-6.72 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{S}(3) \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+\mathrm{OOH}^{-} \rightarrow \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{OO}$ (triangle) $+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{G}=4.49 \mathrm{kcal} / \mathrm{mol}$

