Supporting Information

Probing interactions through space using spin-spin coupling

Martin W. Stanford, Fergus R. Knight, Kasun S. Athukorala Arachchige, Paula Sanz Camacho, Sharon E. Ashbrook, Michael Bühl, Alexandra M. Z. Slawin, J. Derek Woollins*.

EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, U.K.; E-mail: jdw3@st-andrews.ac.uk; Fax: (+44) 1334 463384; Tel: (+44)1334 463829.

1. Experimental Section

Additional ¹³C NMR and IR spectroscopy data for compounds 2-9.

5-(4-fluorophenyltelluro)-6-(phenylselenyl)acenaphthene [Acenap(TeFp)(SePh)] (2): IR (KBr disk): v_{max} cm⁻¹ 3057w, 2923w, 1872w, 1638w, 1575vs, 1479vs, 1436s, 1408w, 1328s, 1294w, 1249w, 1223vs, 1158s, 1101w, 1069w, 1019w, 841s, 814vs, 737vs, 688s, 666w, 616w, 602w, 572w, 504s, 473w, 413w, 324w; ¹³C NMR (75.5 MHz; CDCl₃; 25°C; Me₄Si) δ = 163.7(q, ¹*J*(C,F) = 248.6 Hz), 150.3(q), 146.2(q), 143.5(q, ³*J*(C,F) = 7.6 Hz), 141.8(q), 141.6(s), 136.4(q), 136.1(q) 135.9(s), 130.1(s), 129.6(s), 126.9(s), 123.4(q), 121.7(s), 120.9(s), 117.6(d, ²*J*(C,F) = 20.4 Hz), 117.0(q, d, ⁴*J*(C,F) = 3.8 Hz), 113.5(q), 30.8 (s, CH₂), 30.1(s, CH₂).

5-(4-methylphenyltelluro)-6-(phenylselenyl)acenaphthene [Acenap(TeTol)(SePh)] (3): IR (KBr disk): *v*_{max} cm⁻¹ 3029w, 2912s, 1872w, 1591w, 1574s, 1475s, 1434s, 1406s, 1328s, 1252w, 1231w, 1209w, 1180w, 1096w, 1058w, 1013s, 839vs, 797vs, 736vs, 689vs, 603w, 572w, 483s, 455s; ¹³C NMR (75.5 MHz; CDCl₃; 25 °C; Me₄Si) *δ* = 150.2(q), 146.0(q), 141.7(q), 141.5(s), 141.4(s), 138.9(q), 136.4(q), 136.2(q), 136.0(s), 131.1(s), 130.2(s), 129.6(s), 126.8(s), 123.6(q), 121.7(s), 120.7(s), 118.8(q), 113.6(s), 30.8(s, CH₂), 30.8(s, CH₂), 22.0(s, CH₃).

5-(4-methoxyphenylltelluro)-6-(phenylselenyl)acenaphthene [Acenap(TeAn-*p***)(SePh)] (4): IR (KBr disk): v_{max} cm⁻¹ 3056s, 3002s, 2935s, 2831s, 2528w, 2485w, 2422w, 2370w, 2274w, 2032w, 1936w, 1883s, 1792w, 1739w, 1627w, 1583vs, 1484vs, 1460vs, 1434vs, 1407vs, 1326vs, 1300s, 1282vs, 1243vs, 1176vs, 1100s, 1065s, 1027vs, 930w, 905w, 842vs, 814vs, 788s, 733vs, 684vs, 604s, 588s, 516s, 476s, 454s, 325w; ¹³C NMR (75.5 MHz; CDCl₃; 25 °C; Me₄Si) \delta = 160.6(q), 150.2 (q), 146.0 (q), 143.1(s), 141.8(q), 141.6(s), 136.4(q), 136.2(q), 135.8(s), 130.2(s), 129.6(s), 126.8(s), 123.5(q), 121.7(s), 120.8(s), 116.1(s), 114.0(q), 112.4(q), 55.6(s, CH₃), 30.9(s, CH₂), 30.1 (s, CH₂).**

5-(2-methoxyphenylltelluro)-6-(phenylselenyl)acenaphthene [Acenap(TeAn-*o*)(SePh)] (5): IR (KBr disk): v_{max} cm⁻¹ 3045w, 0.22w, 3007w, 2954w, 2919s, 2826w, 2035w, 1888w, 1855w, 1653w, 1591w, 1575vs, 1459vs, 1436vs, 1426s, 1409s, 1329s, 1293s, 1269s, 1243vs, 1174s, 1168s, 1116s, 1101s, 1054s, 1020vs, 999s, 928w, 839s, 812s, 791s, 749vs, 139vs, 714s, 690vs, 669s, 645w, 614w, 602s, 566w, 536w, 493w, 478s, 455w, 440w, 416w; ¹³C NMR (75.5 MHz; CDCl₃; 25 °C; Me₄Si) δ = 161.4(q), 149.8(q), 146.3(q), 141.9(s), 141.7(q), 140.7(s), 137.4(s), 136.8(q), 129.6(q), 131.1(s), 130.9(s), 129.6(s) 127.0(s), 124.3(q), 122.(s), 121.7(s),120.7(s), 113.5(q), 112.3(q), 110.6(s), 56.5(s, CH₃), 30.8(s, CH₂), 30.2(s, CH₂). **5-(4-tertbutylphenyltelluro)-6-(phenylselenyl)acenaphthene** [Acenap(TeTp)(SePh)] (6): IR (KBr disk): v_{max} cm⁻¹ 3450w,

3052w, 2954s, 1657w, 1577s, 1475s, 1437s, 1406s, 1384s, 1332s, 1253s, 1230s, 1110s, 1060s, 843s, 820vs, 737s, 687s, 666s, 605w, 551s, 460w, 277s; ¹³C NMR (75.5 MHz; CDCl₃; 25 °C; Me₄Si) δ = 152.1(q), 150.2(q), 146.0(q), 141.7(q), 141.5(s), 141.0(s), 138.2(q), 136.4(q), 136.2(s), 130.3(s), 129.6(s), 127.3(s), 126.8(s), 123.7(q), 121.7(s), 120.7(s), 119.0(q), 113.6(q), 35.2(s, *C*(CH₃)₃), 31.8(s, 3 x *C*H₃), 30.8(s, *C*H₂), 30.1(s, *C*H₂).

5-(2,4,6-trimethylphenyltelluro)-6-(phenylselenyl)acenaphthene [Acenap(TeMes)(SePh)] (7): IR (KBr disk): v_{max} cm⁻¹ 3019w, 2915s, 1657w, 1577s, 1476s, 1436vs, 1375w, 1324s, 1290w, 1250w, 1232w, 1156w, 1099w, 1069w, 1020s, 891w, 842vs, 814s, 728vs, 686s, 603w, 542w, 487w, 455w, 330w; ¹³C NMR (75.5 MHz; CDCl₃; 25 °C; Me₄Si) δ = 150.2(q), 146.1(q), 145.7(q), 141.8(q), 141.5(s), 139.5(q), 136.6(q), 136.5(q), 134.4(s), 130.4(s), 129.5(s), 127.9(s), 126.7(s), 126.2(q), 123.7(q), 121.9(s), 120.7(s), 30.8(s, CH₂), 29.2(s, 2 x CH₃), 21.6(s, CH₃).

5-(2,4,6-triisopropylphenylltelluro)-6-(phenylselenyl)acenaphthene [Acenap(TeTip)(SePh)] (8): IR (KBr disk): v_{max} cm⁻¹ 3057w, 2954vs, 1867w, 1600w, 1589s, 1577vs, 1553s, 1476vs, 1456s, 1436s, 1407s, 1378s, 1359s, 1328s, 1309s, 1293w, 1251s, 1233s, 1176w, 1162w, 1149w, 1113w, 1100s, 1068s, 1020s, 998s, 933s, 876s, 838vs, 813s, 747s, 731vs, 689s, 667s, 647w, 618w, 605w, 489w, 455.7s; ¹³C NMR (75.5 MHz; CDCl₃; 25 °C; Me₄Si) δ = 155.7(q), 150.9(q), 150.3(q), 145.7(q), 141.9(q), 141.5(s), 136.7(q), 136.3(q), 135.8(s), 130.5(s), 129.5(s), 127.7(q), 126.7(s), 123.7(q), 121.9(s), 121.7(s), 120.7(s), 114.9(q), 39.8(s, 2 x CHMe₂), 34.7(s, 1 x CHMe₂), 30.83(s, CH₂), 30.1(s, CH₂), 25.3(s, 4 x CH₃), 24.5(s, 2 x CH₃).

5-(naphthyltelluro)-6-(phenylselenyl)acenapthene [Acenap(TeNap)(SePh)] (9): IR (KBr disk): v_{max} cm⁻¹ 3051s, 2914w, 2824w, 1939w, 1868w, 1599w, 1574s, 1552w, 1494w, 1475s, 1435s, 1407s, 1324s, 1251s, 1230w, 1193w, 1098s, 1064w, 1018s, 946w, 909w, 839s, 791s, 768s, 731s, 686s, 665w, 602w, 524w, 455w, 408w; ¹³C NMR (75.5 MHz; CDCl₃; 25°C; Me₄Si) $\delta = 150.4(q)$, 146.0(q), 142.0(s), 141.8(q), 141.6(s), 138.7(q), 137.0(q), 136.3(s), 134.0(q), 133.8(s), 132.7(q), 130.9(s), 130.2(s), 129.6(s), 129.2(s), 127.5(s), 127.2(s), 126.9(s), 126.7(s), 125.8(q), 123.5(q), 121.8(s), 120.8(s), 113.0(q), 30.8(s, CH₂).

2. Solid-State NMR Experimental Details

Table S1.	Experimental	details,	the number	of coadded	transients,	recycle	intervals	and	cross-polarisation	contact	times
(where app	propriate) used	for record	rding the 77Se	e solid-state	NMR spect	tra.					

Sample	Experiment	Magnetic field (T)	Number of transients	Recycle interval / s	Contact time / ms
6	CP MAS	9.4	17248	3	8
8	CP MAS	9.4	1656	3	8

Table S2. Experimental details, the number of coadded transients, recycle intervals and cross-polarisation contact times (where appropriate) used for recording the ¹²⁵Te solid-state NMR spectra.

Sample	Experiment	Magnetic field (T)	Number of transients	Recycle interval / s	Contact time / ms
6	CP MAS	9.4	54264	3	8
8	CP MAS	9.4	46560	3	8

Figure S1. ⁷⁷Se (a) and ¹²⁵Te (b) solid-state NMR spectra of compound **6**, recorded using MAS rates of 5 kHz and 10.5 kHz, respectively. The values quoted correspond to the isotropic chemical shift. The presence of an as yet unidentified impurity is observed in both spectra (indicated by *).

3. Crystal structure analyses

Figure S2. The absolute conformation of aromatic rings is calculated from torsion angles θ (defining rotation around the E-C_{Are} bond) and γ (defining rotation around the E-C_{Are} bond) and classified by types A (axial, perpendicular), B (equatorial, planar) or C (twist) and **pd** (perpendicular), **pl** (planar) or **np** (not planar or perpendicular).^{1,2}

Figure S3. Molecular structures of compounds 2-9.

	2	3	4
Empirical Formula	C ₂₄ H ₁₇ FSeTe	C ₂₅ H ₂₀ SeTe	C ₂₅ H ₂₀ OSeTe
Formula Weight	530.96	526.99	542.99
Temperature (°C)	-148(1)	-100	-148(1)
Crystal Colour, Habit	colorless, block	colorless, prism	colorless, chunk
Crystal Dimensions (mm ³)	0.120 X 0.090 X 0.060	0.120 X 0.090 X 0.020	0.150 X 0.120 X 0.030
Crystal System	monoclinic	triclinic	monoclinic
Lattice Parameters	a = 9.8746(9) Å	a = 10.854(2) Å	a = 8.212(5) Å
	b = 22.045(2) Å	b = 12.244(2) Å	b = 11.442(2) Å
	c = 9.7763(8) Å	c = 17.599(2) Å	c = 22.113(3) Å
	-	$\alpha = 106.370(8)^{\circ}$	-
	$\beta = 116.385(8)^{\circ}$	$\beta = 92.585(7)^{\circ}$	$\beta = 99.96(4)^{\circ}$
	-	$\gamma = 114.888(8)^{\circ}$	-
Volume (Å ³)	1906.4(4)	1999.4(5)	2046(2)
Space Group	P2 ₁ /c	P-1	P2 ₁ /n
Z Value	4	4	4
Dcalc (g/cm ³)	1.850	1.751	1.762
F000	1024	1024	1056
μ (MoK α) (cm ⁻¹)	34.852	33.155	32.457
No. of Reflections Measured	14559	11859	15073
Rint	0.0296	0.0309	0.0961
Min and Max Transmissions	0.670 - 0.811	0.530 - 0.936	0.486 - 0.907
Independ. Reflection (No. Variables)	3359(244)	6653(489)	3606(253)
Reflection/Parameter Ratio	13.77	13.61	14.25
Residuals: R1 (I>2.00o(I))	0.0178	0.0343	0.0667
Residuals: R (All Reflections)	0.0216	0.0525	0.1079
Residuals: wR ₂ (All Reflections)	0.0652	0.0597	0.1918
Goodness of Fit Indicator	1.261	1.033	1.065
Maximum peak in Final Diff. Map	0.51 e ⁻ /Å ³	0.46 e-/Å ³	1.00 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.53 e ⁻ /Å ³	-0.55 e-/Å ³	-2.12 e ⁻ /Å ³

Table S3. Crystallographic data for compounds 2-4.

 Table S4. Crystallographic data for compounds 5-7.

	5	6	7
Empirical Formula	C ₂₅ H ₂₀ OSeTe	C ₂₈ H ₂₆ SeTe	C ₂₇ H ₂₄ SeTe
Formula Weight	542.99	569.07	555.05
Temperature (°C)	-148(1)	-148	-100
Crystal Colour, Habit	colorless, chunk	colorless, chunk	colorless, block
Crystal Dimensions (mm ³)	0.120 X 0.090 X 0.030	0.120 X 0.090 X 0.060	0.120 X 0.060 X 0.050
Crystal System	triclinic	triclinic	monoclinic
Lattice Parameters	a = 8.645(4) Å	a = 9.656(1) Å	a = 9.7619(7) Å
	b = 14.625(7) Å	b = 10.492(2) Å	b = 30.047(2) Å
	c = 17.253(9) Å	c = 12.795(2) Å	c = 8.084(2) Å
	$\alpha = 109.466(12)^{\circ}$	$\alpha = 79.476(6)^{\circ}$	-

	$\beta = 97.975(10)^{\circ}$	$\beta = 73.922(6)^{\circ}$	$\beta = 113.571(8)^{\circ}$
	$\gamma = 93.276(6)^{\circ}$	$\gamma = 70.177(5)^{\circ}$	-
Volume (Å ³)	2024(2)	1166.2(3)	2173.2(5)
Space Group	P-1	P-1	P2 ₁ /c
Z Value	4	2	4
Dcalc (g/cm ³)	1.782	1.621	1.696
F000	1056	560	1088
μ (MoK α) (cm ⁻¹)	32.812	28.488	30.550
No. of Reflections Measured	15382	8975	14054
Rint	0.0524	0.0232	0.0238
Min and Max Transmissions	0.607 - 0.906	0.703 - 0.843	0.685 - 0.858
Independ. Reflection (No. Variables)	7076(505)	4100(271)	3762(265)
Reflection/Parameter Ratio	14.01	15.13	14.20
Residuals: R1 (I>2.00 σ (I))	0.0655	0.0234	0.0213
Residuals: R (All Reflections)	0.0884	0.0298	0.0258
Residuals: wR ₂ (All Reflections)	0.2857	0.0737	0.0567
Goodness of Fit Indicator	1.226	1.168	1.149
Maximum peak in Final Diff. Map	2.42 e ⁻ /Å ³	0.42 e-/Å ³	0.35 e-/Å ³
Minimum peak in Final Diff. Map	-2.33 e ⁻ /Å ³	-0.43 e-/Å ³	-0.36 e-/Å ³

 Table S5. Crystallographic data for compounds 8 and 9.

8	9
$C_{33}H_{36}SeTe$	$C_{28}H_{20}SeTe$
639.21	563.03
-148	-148(1)
colorless, chunk	colorless, chunk
0.120 X 0.090 X 0.030	0.150 X 0.060 X 0.030
monoclinic	monoclinic
a = 14.697(2) Å	a = 29.375(3) Å
b = 14.367(2) Å	b = 7.6824(8) Å
c = 14.835(2) Å	c = 19.044(2) Å
-	-
	8 $C_{33}H_{36}$ SeTe 639.21 -148 colorless, chunk $0.120 \ge 0.090 \ge 0.030$ monoclinic $a = 14.697(2)$ Å $b = 14.367(2)$ Å $c = 14.835(2)$ Å

	$\beta = 119.048(9)^{\circ}$	$\beta = 95.737(7)^{\circ}$
	-	-
Volume (Å ³)	2738.6(5)	4276.1(8)
Space Group	P2 ₁ /n	C2/c
Z Value	4	8
Dcalc (g/cm ³)	1.550	1.749
F000	1280	2192
μ (MoK α) (cm ⁻¹)	24.355	31.070
No. of Reflections Measured	20535	15814
Rint	0.0414	0.0351
Min and Max Transmissions	0.748 - 0.930	0.727 - 0.911
Independ. Reflection (No. Variables)	4827(316)	3763(271)
Reflection/Parameter Ratio	15.28	13.89
Residuals: R1 (I>2.00o(I))	0.0284	0.0248
Residuals: R (All Reflections)	0.0382	0.0303
Residuals: wR ₂ (All Reflections)	0.1078	0.0539
Goodness of Fit Indicator	1.288	1.097
Maximum peak in Final Diff. Map	0.75 e ⁻ /Å ³	0.74 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.88 e ⁻ /Å ³	-0.39 e ⁻ /Å ³

4. Computational Analyses

Starting from the coordinates from X-ray crystallography, geometries were fully optimized in the gas phase at the B3LYP level³ using the Stuttgart-Dresden (SDD) effective core potential along with its double zeta valence basis sets for Te⁴ (augmented with a set of d-polarization functions with exponent 0.237),⁵ Curtis and Binning's 962(d) basis⁶ on Se and 6-31G(d) basis elsewhere. Wiberg bond indices⁷ were obtained in a natural bond orbital analysis⁸ at the same level. This or similar levels have been useful for interpreting experimental findings for *peri*-naphthalene telluride derivatives.⁹ Compound **1** was reoptimised using the PBE0 hybrid functional.¹⁰ A fine integration grid (75 radial shells with 302 angular points per shell) was used throughout. These computations were performed using the Gaussian 09 program.¹¹

Indirect spin-spin coupling constants (SSCCs) were computed¹² at the BP86¹³ level for the B3LYP minima (for **1**, also at the PBE0¹⁰ level using the PBE0 structure¹⁴) with the relativistic zeroth-order regular approximation including spin-orbit coupling (ZORA-SO),^{15,16} together with a TZ2P basis of Slater-type orbitals and a fine integration grid (Integration 6). These calculations were performed with the ADF program.^{17,18}

5. References

¹ P. Nagy, D. Szabó, I. Kapovits, Á. Kucsman, G. Argay, A. Kálmán, J. Mol. Struct. 2002, 606, 61.

² W. Nakanishi, S. Hayashi, S. Toyota, Chem. Commun. 1996, 371; W. Nakanishi, S. Hayashi, A. Sakaue, G. Ono, Y.

Kawada, J. Am. Chem. Soc. 1998, 120, 3635; W. Nakanishi, S. Hayashi, S. Toyota, J. Org. Chem. 1998, 63, 8790; S.

Hayashi, W. Nakanishi, J. Org. Chem. 1999, 64, 6688; W. Nakanishi, S. Hayashi, T. Uehara, J. Phys. Chem. 1999, 103,

^{9906;} W. Nakanishi, S. Hayashi, Phosphorus, Sulfur, Silicon Relat. Elem. 2002, 177, 1833; S. Hayashi, W. Nakanishi, J.

Org. Chem. 2002, **67**, 38; S. Hayashi, W. Nakanishi, *Bull. Chem. Soc. Jpn.* 2008, **81**, 1605; S. Hayashi, K. Yamane, W. Nakanishi, *Bioinorganic Chemistry and Applications* 2009, 2009, **doi:10.1155/2009/347359**; T. Nakai, M. Nishino, S. Hayashi, M. Hashimoto, W. Nakanishi, *Dalton Trans.* 2012, **41**, 7485.

³ A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.

- ⁴ P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd, *J. Chem. Phys.*, 1989, **91**, 1762-1774; A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, *Mol. Phys.*, 1993, **80**, 1431-1441.
- ⁵ S. Huzinaga, J. Anzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, H. Tatewaki, in: *Gaussian Basis Sets for Molecular Calculations*, Elsevier, Amsterdam, 1984.
- ⁶ R. C. Binning, L. A. Curtiss, J. Comput. Chem., 1990, 11, 1206.
- ⁷ K. B. Wiberg, *Tetrahedron*, 1968, 24, 1083-1096.
- ⁸ A. E. Reed, F. Curtiss, L. A. F. Weinhold, Chem. Rev., 1988, 88, 899-926.
- ⁹ F. R. Knight, A. L. Fuller, M. Bühl, A. M. Z. Slawin, J. D. Woollins, *Chem. Eur. J.* 2010, **16**, 7605 -7616; F. R. Knight, A. L. Fuller, M. Bühl, A. M. Z. Slawin, J. D. Woollins, *Inorg. Chem.* 2010, **49**, 7577–7596; F. R. Knight, K. S. A. Arachchige, R, A. M. Randall, M. Bühl, A. M. Z. Slawin, J. D. Woollins, *Dalton Trans.* 2012, **41**, 3154-3165.
- ¹⁰ J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1996, **77**, 3865; J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1997, **78**, 1396; C. Adamo, V. Barone, *J. Chem. Phys.* 1999, **110**, 6158.
- ¹¹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
- ¹² J. Autschbach, T. Ziegler, J. Chem. Phys. 2000, 113, 936; J. Autschbach, J. Chem. Phys. 2008, 129, 094105.
- ¹³ A. D. Becke, *Phys. Rev. A* 1988, 38, 3098-3100; J. P. Perdew, *Phys. Rev. B* 1986, 33, 8822; J. P. Perdew, *Phys. Rev. B* 1986,34, 7406.

The effect of the functional used in the geometry optimisation is quite small for **1**, where the ZORA-SO/BP86 couplings are very similar for the B3LYP and PBE0 optimised structures, within 5 Hz.

- ¹⁵ E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. **1994**, 101, 9783; E. van Lenthe, R. van Leeuwen, E. J. Baerends, J. G. Snijders, Int. J. Quantum Chem. **1996**, 57, 281-293; E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. **1993**, 99, 4597.
- ¹⁶ E. van Lenthe, J. G. Snijders, E. J. Baerends, J. Chem. Phys. 1996, 105, 6505.
- ¹⁷ E. J. Baerends, D. E. Ellis, P. Ros, *Chem. Phys.* **1973**, *2*, 41; G. te Velde, E. J. Baerends, *J. Comput. Phys.* **1992**, *99*, 84; G. te Velde, F. M. Bickelhaupt, E. J.Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. **2001**, *22*, 931.
- ¹⁸ E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo,

D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, P.R.T. Schipper, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev, ADF2010.02, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com (accessed May 2012).