Tetraphosphonated thiophene ligand : mixing the soft and the hard for complexation

Jérémy Brandel,*^a Alexandre Lecointre,^b Julien Kollek,^b Sylvia Michel,^a Véronique Hubscher-Bruder,^a Isabelle Déchamps,^c Carlos Platas-Iglesias,^d and Loïc J. Charbonnière*^b

Supplementary Information (9 pages)

Table S1. log β^{H} values determined by UV-Vis absorption spectroscopy.

Table S2. Comparison of the values of the stability constants obtained with ligand L_T and Cu(II), Ni(II) and Zn(II) by potentiometry and by spectroscopy.

Table S3. Atomic coordinates of the optimized structures of $[Cu_2L_{T2}]^{12-}$

Figure S1. Potentiometric titration ($[L_T]_{tot} = 1.0 \times 10^{-3}$ M) vs pH (2.24 < p[H] < 12.82, Solvent: H₂O, I = 0.1 M (NaClO₄), T = 25.0(2) °C).

Figure S2. Electronic spectra of the protonated species of L_T . Solvent : H_2O ; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Figure S3. Potentiometric titration of $M:L_T$ (M = Cu(II), Zn(II), Ni(II), $[M]/[L_T] = 1$, $[L_T]_{tot} = 1.0 \times 10^{-3}$ M) vs pH (2.24 < p[H] < 11.82, Solvent: H₂O, I = 0.1 M (NaClO₄), T = 25.0(2) °C).

Fig. S4. Absorption titration curves vs pH of the Cu(II) complexes of L_T . $[L_T]_{tot} = 1.0 \times 10^{-4}$ M, I = 1cm for 220-420 nm and $[L_T] = 5.97 \times 10^{-4}$ M, I = 4 cm for 475-850 nm; $[M]/[L_T]=1$; 2.01 < p[H] < 12.59; Solvent: H_2O ; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Fig. S5. Absorption titration curves vs pH of the Zn(II) complexes of L_T . $[L_T]_{tot} = 1.0 \times 10^{-4}$ M, I = 1 cm; $[Zn(II)]/[L_T]=1$; 2.21 < p[H] < 12.50; Solvent: H₂O; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Fig. S6. Absorption titration curves vs pH of the Ni(II) complexes of L_T . $[L_T]_{tot} = 1.0 \times 10^{-4}$ M, I = 1 cm; $[Ni(II)]/[L_T]=1$; 2.22 < pH < 12.45; Solvent: H₂O; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Fig. S7 Absorption titration curves of L_T by Cu(II) at pH 4.3. $[L_T]_{tot} = 1.0 \times 10^{-4}$ M; 0 < [Cu(II)]/[L] < 8.82; Solvent: acetate buffer 0.1M; I = 1cm; T = 25.0(2) °C.

Fig. S8 Calculated electronic spectra of the Cu: L_T species at pH 4.3. Solvent: acetate buffer 0.1M; I = 1cm; T = 25.0(2) °C.

Fig. S9 Distribution diagram of the Cu: L_T species and experimental data at 295 nm at pH 4.3 (acetate buffer, 0.1M). $[L_T]_{tot} = 1.0 \times 10^{-4}$ M; 0 < $[Cu(II)]/[L_T] < 8.82$; Solvent: acetate buffer 0.1M; I = 1cm; T = 25.0(2) °C.

Fig. S10. EPR spectra of a 1:1 mixture of Cu(II) and L_T as a function of the pH at 150 K in an EtOH/H₂O glassy matrix.

Table S1. log β^{H} values determined by UV-Vis absorption spectroscopy.

LH	12.39(6)
LH ₂	23.14
LH ₃	30.1*
LH ₄	36.2*
LH ₅	/
LH ₆	45.7(2)

 $[L_T]_{tot} = 1.0 \times 10^{-4}$ M, I = 1 cm, Solvent: H₂O; I = 0.1 M (NaClO₄); T = 25.0(2) °C, 2.01 < p[H] < 12.59. Values are given with their standard deviation (s). Charges have been omitted for the sake of clarity. Values with * were fixed during refinement of the model.

Table S2.Comparison of the values of the stability constants obtained with ligand L_T and Cu(II), Ni(II) and Zn(II) by potentiometry and by spectroscopy.

	Log β		
	Spectro	potentio	
NiL _T	10.3(4)	10.9(1)	
NiL _T H	22.37(4)	21.56(2)	
NiL _T H ₂	30.77(9)	28.34(2)	
NiL _T H ₃	/	34.37(2)	
NiL _T H ₄	42.3(1)	39.42(4)	
Ni(OH)	-8.1		
Ni(OH) ₂	-16.47		

	Log β	
	Spectro	potentio
ZnL _T	10.98(4)	10.81(8)
ZnL _T H	22.68(4)	21.48(7)
ZnL _T H ₂	30.0(2)	28.66(5)
$ZnL_{T}H_{3}$	35.22(6)	35.22(6)

ZnL _T H ₄	40.6(3)	40.21(5)
Zn(OH)	-7.89	
Zn(OH) ₂	-14	.92

	Log β	
	Spectro	potentio
CuL _T	16.6(2)	16.11(3)
CuL _T H	26.0(2)	26.09(3)
CuL _T H ₂	32.7*	32.65(2)
CuL _T H ₃	/	37.80(2)
CuL _T H ₄	42.42(2)	42.25(2)
CuL _T (OH)	4.2(2)	/
Cu(OH)	-6.29	
Cu(OH) ₂	-13.1	

Solvent: H_2O ; I = 0.1 M (NaClO₄); T = 25.0(2) °C. Values are given with their standard deviation (s). Charges have been omitted for the sake of clarity. Values with * were fixed during refinement of the model.

$[Cu_2(L_T)_2]^{12-}$,	TPSSh/SVP	= imaginary	frequencies
C	2.34481200	2.76504000	0.43352800
Н	2.52722700	3.84865000	0.57704500
Ν	3.52783700	2.16515500	-0.23367800
С	3.70509400	2.53603100	-1.66718600
Н	2.72378800	2.77185900	-2.10280400
Н	4.35416100	3.43093700	-1.71813400
С	4.75799400	2.53890900	0.53326200
Н	5.58835000	2.00649300	0.04033700
Н	4.63551400	2.12128700	1.54376300
P	4.39784500	1.09230200	-2.61303700
P	5.27013100	4.36748400	0.69843200
0	4.05632200	5.11681200	1.32312500
0	6.48606200	4.23427400	1.65089200
0	5.63519600	4.85853700	-0.73250900
0	3.45872300	-0.08085100	-2.02151000
0	5.87011000	0.89456100	-2.20599200
0	4.11435100	1.32284700	-4.10229000
Н	2.33330800	2.30984000	1.43844400
Cu	3.36705500	-0.00183200	-0.08778400
С	4.97562400	-2.44153400	-0.28841600
Н	5.13085000	-2.00455700	-1.28752100
Ν	3.56035700	-2.13823100	0.09573900

Table S3. Atomic coordinates of the optimized structures of $\left[Cu_{2}L_{T2}\right]^{12-}$

С	3.34696300	-2.49533800	1.52204800
H	3.91446600	-3.41786600	1.74717000
Н	2.27522200	-2.66208800	1.69682500
С	2.64248500	-2.82232200	-0.86863900
Н	2.90397700	-2.39341200	-1.84674400
Н	2.92082900	-3.89414100	-0.89381700
P	3.79478900	-1.07301100	2.63119400
0	5.32380500	-0.89450400	2.65582600
0	3.06453200	0.11139600	1.81603600
0	3.10996300	-1.32218200	3.98045700
Н	5.59957900	-1.88245700	0.42781200
С	1.03252700	2.48884900	-0.24495100
С	0.69479400	1.53042200	-1.17511800
S	-0.37392100	3.44770100	0.15777500
С	-0.67942900	1.57094900	-1.56039500
Н	1.43934700	0.84361700	-1.59022500
С	-1.41374800	2.55006700	-0.93023600
Н	-1.14438500	0.89922700	-2.28265100
С	-2.85773900	2.89125600	-1.14584800
Н	-3.10626400	2.66344100	-2.19425300
Н	-3.05359200	3.96197000	-0.93722700
P	5.61934700	-4.23799400	-0.29944900
0	4.70275800	-5.03954900	-1.27033600
0	7.05895400	-4.01487100	-0.83025500
0	5.55960900	-4.74298500	1.17144300
С	1.16827200	-2.60613400	-0.69043100
С	0.31892100	-1.92615700	-1.53555100
S	0.21725100	-3.34590600	0.58962500
С	-1.06076100	-1.96208000	-1.15609900
Н	0.69142400	-1.40063200	-2.41656900
С	-1.28743100	-2.68702300	-0.00875800
H	-1.86782400	-1.45164000	-1.69172300
С	-2.54445300	-2.93979300	0.77119200
H	-2.84001100	-4.01090300	0.69373900
H	-2.37037800	-2.69550800	1.83332000
N	-3.71139400	-2.14263000	0.31403500
Ν	-3.82164400	2.11022300	-0.30198400
С	-4.07041500	2.80714900	0.98641900
H	-3.09537800	2.90367500	1.49215300
H	-4.66861400	2.13113500	1.61729000
С	-5.07782500	1.86202900	-1.05600000
H	-5.58320200	2.81610300	-1.29267400
H	-5.75660900	1.32378200	-0.37191200
С	-4.60667300	-1.85184400	1.46454700
H	-5.47470500	-1.30106400	1.06282100
H	-5.01376100	-2.78954600	1.88506400
С	-4.42936100	-2.84367700	-0.78593000
H	-3.70443100	-2.98357200	-1.60422300
H	-5.19065500	-2.14885100	-1.17433800
Cu	-3.27492600	-0.00136700	-0.09024800
P	-3.77007400	-0.76331400	2.73344000
P	-5.23452800	-4.53928700	-0.46952100
P	-4.86953300	4.53449800	1.00389600
P	-4.78884800	0.76756300	-2.54628100
0	-5.77216600	-4.86735600	-1.88652900
0	-4.07388200	-5.47386800	-0.00489000

0	-6.33838200	-4.33178200	0.60207500
0	-4.87815500	0.08110400	3.37865300
0	-2.80010700	0.08377200	1.77052300
0	-2.94488800	-1.64184400	3.69131500
0	-3.91468000	5.45508000	0.18175000
0	-6.28548100	4.39158600	0.38284800
0	-4.86452600	4.82759200	2.52668300
0	-3.56471300	-0.11822000	-1.99393500
0	-4.33249000	1.62708300	-3.73941000
0	-6.07894000	-0.03985500	-2.74771600
E(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			
E(01PSSII) = -9010	-254/911 Harts		
Thermal correction	$\sum 1011 = 0.5021.$	0 624049	
	i to Energy -	0.024040	
Inermal correction	1 to Enthalpy	= 0.624992	
Thermal correction	n to Gibbs Fre	ee Energy = 0.4	62751
Sum of electronic	and zero-poin	nt Energies = -	9609.692661
Sum of electronic	and thermal H	Energies = -960	9.630743
Sum of electronic	and thermal H	Enthalpies = -9	609.629799
Sum of electronic	and thermal H	Free Energies =	-9609.792040

Figure S1. Potentiometric titration ($[L_T]_{tot} = 1.0 \times 10^{-3}$ M) vs pH (2.24 < p[H] < 12.82, Solvent: H₂O,I = 0.1 M (NaClO₄),T = 25.0(2) °C).

Figure S2. Electronic spectra of the protonated species of L_T . Solvent : H_2O ; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Figure S3. Potentiometric titration of $M:L_T$ (M = Cu(II), Zn(II), Ni(II), [M]/[L_T] = 1, [L_T]_{tot} = 1.0 × 10⁻³ M) vs pH (2.24 < p[H] < 11.82, Solvent: H₂O, I = 0.1 M (NaClO₄), T = 25.0(2) °C).

Fig. S4. Absorption titration curves vs pH of the Cu(II) complexes of L_T . $[L_T]_{tot} = 1.0 \times 10^{-4}$ M, I = 1cm for 220-420 nm and $[L_T] = 5.97 \times 10^{-4}$ M, I = 4cm for 475-850 nm; $[M]/[L_T]=1$; 2.01 < p[H] < 12.59; Solvent: H₂O; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Fig. S5. Absorption titration curves vs pH of the Zn(II) complexes of L_T . $[L_T]_{tot} = 1.0 \times 10^{-4}$ M, I = 1 cm; $[Zn(II)]/[L_T]=1$; 2.21 < p[H] < 12.50; Solvent: H₂O; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Fig. S6. Absorption titration curves vs pH of the Ni(II) complexes of L_T . $[L_T]_{tot} = 1.0 \times 10^{-4}$ M, I = 1 cm; $[Ni(II)]/[L_T]=1$; 2.22 < pH < 12.45; Solvent: H₂O; I = 0.1 M (NaClO₄); T = 25.0(2) °C.

Fig. S7 Absorption titration curves of L_T by Cu(II) at pH 4.3. $[L_T]_{tot} = 1.0 \times 10^{-4}$ M; 0 < [Cu(II)]/[L] < 8.82; Solvent: acetate buffer 0.1M; I = 1cm; T = 25.0(2) °C.

Fig. S8 Calculated electronic spectra of the Cu: L_T species at pH 4.3. Solvent: acetate buffer 0.1M; I = 1cm; T = 25.0(2) °C.

Fig. S9 Distribution diagram of the Cu: L_T species and experimental data at 295 nm at pH 4.3 (acetate buffer, 0.1M). $[L_T]_{tot} = 1.0 \times 10^{-4}$ M; 0 < $[Cu(II)]/[L_T] < 8.82$; Solvent: acetate buffer 0.1M; I = 1cm; T = 25.0(2) °C.

Fig. S10. EPR spectra of a 1:1 mixture of Cu(II) and L_T as a function of the pH at 150 K in an EtOH/H₂O glassy matrix.