Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supplementary data

A benzimidazole functionalised DO3A chelator showing pH switchable coordination modes with lanthanide ions

Christopher M. Fisher,^{*a*} Euan Fuller,^{*b*} Benjamin P. Burke,^{*a*} Vijetha Mogilireddy,^{*c*} Simon J. Pope,^{*d*} Amanda E. Sparke,^{*a*} Isabelle Dechamps-Olivier,^{*c*} Cyril Cadiou,^{*c*} Francoise Chuburu,^{*c*} Stephen Faulkner^{*b*} and Stephen J. Archibald*^{*a*}

Figure S1. 500 MHz ¹H NMR spectrum of (a) [Eu2] in D₂O at room temperature and (b) [Y2] in D₂O (variable temperature from 25°C to 85°C in 10°C increments.)

Figure S2: UV/vis. spectra of 2 showing spectral change with pH (a) 2<pH<6 and (b) 8<pH<12.

Figure S3: UV/vis. spectra of [Gd**2**] and [Eu**2**] showing spectral change with pH (a) 2<pH<7.5 and (b) 7.5<pH<12.

Figure S4: Speciation plots for copper(II) and zinc (II) with **2**. The variation of spectral intensity at 282 or 278 nm is shown.

Figure S5: UV/vis. spectra of [Zn2] and [Cu2] showing spectral change with pH (a) 2<pH<7.5 and (b) 7.5<pH<12.

Figure S6. UV/Vis spectrum of [Eu2] above and below the pK_a value of 9.28 $\,$

pK_{MLH}	Си	Zn	Gd	Eu
$MLH_4 = MLH_3 + H$	-	3.3	-	-
$MLH_3 = MLH_2 + H$	4.3	4.2	-	-
$MLH_2 = MLH + H$	4.5	5.2	3	4.1
MLH = ML + H	9.2	9.6	8.4	9.3

Table S1 Deprotonation constants of the protonated complexes

Figure S7. Fitted decay for the emission from [Eu2] in D₂O (λ_{exc} = 272 nm, λ_{em} = 615 nm).

Figure S8. Fitted decay for the emission from [Tb2] in D₂O ($\lambda_{exc} = 272$ nm, $\lambda_{em} = 545$ nm).

Equations S1 to S3: Calculating q values for europium(II), terbium(III) and ytterbium(III) complexes.

$q^{\rm Eu} = 1.2(1/\tau H_2 O - 1/\tau D_2 O - 0.25)$	Eqn. S1
$q^{\text{Tb}} = 5(1/\tau \text{H}_2\text{O} - 1/\tau \text{D}_2\text{O} - 0.06)$	Eqn. S2
$q^{\rm Yb} = 1(1/\tau H_2 O - 1/\tau D_2 O - 0.1)$	Eqn. S3

Figure S9. Emission spectra for [Eu2] at various concentrations in aqueous solution, spectra are shown uncorrected. Emission spectra were obtained using $\lambda_{exc} = 272$ nm.

Figure S10. Emission spectra for [Tb2] in aqueous solution, spectra are shown uncorrected.

Figure S11. Full stacked plot showing the pD dependence of the ¹H NMR spectrum of (300 MHz) [Yb2] at 293K, note the irreversible behaviour as the pD is raised to pD 11, then lowered to pD 2.

Figure S12. Expansion of the 130 - 100 ppm region of the spectra of [Yb2] showing a dependence of the axial proton resonances on the pD.

Figure S13. Plot of the luminescence lifetime of [Yb2] in CD₃OD.

Figure S14. Plot of the luminescence lifetime of [Yb2] in CH₃OH.

Solvent	Lifetime / µs
CD₃OD	6.8
CH₃OH	2.3

Table S2 Luminescence lifetimes of [Yb2] in methanol.