Preparation of Pt–Tl Clusters Showing New Geometries. X-ray, NMR and Luminescence Studies

Úrsula Belío, Sara Fuertes † and Antonio Martín*

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Departamento de Química Inorgánica. Universidad de Zaragoza – CSIC. 50009 Zaragoza, Spain.

[†] ARAID Researcher

SUPPLEMENTARY INFORMATION

а

Figure S1. Supramolecular arrangement of the cations of complex **3** (a) and **4** (b). The cyan lines show the intermolecular $\pi \cdots \pi$ interactions.

Figure S2. Solid state ¹⁹⁵Pt NMR spectra of compound **1** registered at spinning speeds of 8 and 12 kHz.

Figure S3. Solid state ¹⁹⁵Pt NMR spectra of compound **3** registered at spinning speeds of 5, 8 and 12 kHz.

Figure S4. ¹⁹⁵Pt NMR spectra of crystals of compound **4** and **4** + TlPF₆ exc. in CD_2Cl_2 at room temperature.

Figure S5. Solid state ¹⁹⁵Pt NMR spectra of compound 2 registered at spinning speeds of 5, 8 and 12 kHz. and ¹⁹⁵Pt NMR spectra of compound **2** in CD₂Cl₂ at 193K.

Figure S6. Normalized UV-Vis absorption spectra of 1-4 in CH₂Cl₂ at 298 K

Figure S7. Normalized UV-vis spectra of 1 in different solvents

	1	
Comp.	Media	$\lambda_{abs} / nm (10^3 \epsilon M^{-1} cm^{-1})$
	Solid	278, 351, 436, 509
	Toluene	282 (34.1), 304 (9.1), 351 (12.1), 441 (0.3)
1	2-Me-THF	271 (105.5), 303 (34.2), 351 (35.5), 436 (1.3)
	CH ₂ Cl ₂	281 (27.6), 300 (20.8), 334 (13.3), 348 (16.2), 435 (0.2)
	Acetone	348 (13.6), 438 (0.3)
	DMF	277 (36.5), 349 (11.9), 434 (0.4)
	Solid	277, 345, 416, 439, 514
	Toluene	285 (44.4), 338 (19.1), 350 (22.4), 420 (0.7), 443 (0.5)
2	2-Me-THF	290 (25.8), 322 (11.9), 336 (16.5), 350 (19.2), 418 (0.6), 442 (0.4)
	CH ₂ Cl ₂	279 (43.7), 318 (6.8), 336 (15.4), 348 (18.7), 414 (0.3), 439 (0.2)
	Acetone	319 (26.6), 336 (16.7), 346 (19.8), 417 (0.5), 437 (0.4)
	DMF	279 (37.1), 319 (7.5), 335 (14.3), 347 (17.0), 417 (0.4), 436(0.3)
	Solid	277, 347, 432, 512
	Toluene	284 (76.9), 306 (24.7), 352 (33.0), 440 (1.6)
2	2-Me-THF	281 (98.6), 339 (32.3), 351 (36.5), 437 (1.4)
3	CH ₂ Cl ₂	277 (106.3), 341 (38.6), 430 (0.3)
	Acetone	348 (41.4), 435 (1.1)
	DMF	279 (117.8), 338 (33.9), 349 (39.0), 434 (1.3)
	Solid	277, 344, 419, 443, 520
	Toluene	285 (39.9), 312 (14.8), 338 (18.9), 350 (21.4), 418 (0.6), 441 (0.5)
4	2-Me-THF	278 (63.5), 310 (11.9), 336 (17.9), 349 (18.7), 416 (0.9), 441 (0.8)
4	CH_2Cl_2	278 (37.8), 335 (13.6), 348 (16.2), 413 (0.4), 438 (0.3)
	Acetone	336 (17.6), 346 (23.1), 416 (0.6), 438 (0.5)
	DMF	278 (42.5), 334 (16.1), 347 (18.9), 416 (0.5), 438 (0.4)

Table S1. Absorption data for 1-4 in solid state and in solution (10^{-5} M) at 298K.

Figure S8. DFT-Optimized structure of [Pt(CNC)(CN'Bu)] (2)

Center	Х	Coordinates Y	(Angstroms) Z	
Pt	0.042705	-0.011545	0.005030	
Ν	-1.998753	0.041599	-0.000999	
Ν	3.118132	-0.084148	0.008046	
С	-0.381043	-2.056951	0.002927	
С	-0.272536	2.054699	0.003920	
С	-2.597777	1.252690	-0.003662	
С	-3.991660	1.303603	-0.008549	
С	-4.706232	0.111583	-0.010364	
С	-4.054552	-1.116149	-0.007560	
С	-2.659994	-1.136763	-0.002860	
С	1.943992	-0.057842	0.007849	
С	4.557515	-0.071861	-0.006454	
С	-2.096286	3.706748	-0.003624	
С	-0.042791	-4.472775	0.002329	
С	-1.416890	-4.698562	-0.000150	
С	5.045436	-1.515084	-0.085062	
С	-2.285507	-3.615380	-0.001664	
С	-1.781288	-2.312250	-0.000294	
С	-1.174568	4.745069	-0.001139	
С	0.186647	4.451240	0.003991	
С	-1.658589	2.380036	-0.001134	
С	0.623283	3.127029	0.006526	
С	0.459751	-3.172339	0.003747	
С	5.006927	0.723482	-1.228574	
С	5.035490	0.595943	1.279431	
Н	-3.162480	3.937919	-0.007558	

H	1.542460	-3.028627	0.005301
Н	-4.619579	-2.044642	-0.009194
Н	-3.362219	-3.791349	-0.003956
Н	-4.506973	2.260682	-0.010999
Н	0.643262	-5.320164	0.003180
Н	-1.809653	-5.713957	-0.001074
Н	-1.515643	5.778962	-0.003145
Н	0.914565	5.263003	0.006081
Н	1.697670	2.928355	0.010859
Н	6.142815	-1.533925	-0.102491
Н	4.700496	-2.090629	0.782957
Н	6.132518	0.631377	1.288726
Н	4.697024	0.035862	2.159637
Н	4.651785	1.621361	1.350842
Н	4.673387	-2.001402	-0.995373
Н	4.628322	1.752335	-1.182097
Н	6.103550	0.755680	-1.264066
Н	4.640838	0.260102	-2.152851
Н	-5.794733	0.140437	-0.014211

Figure S9. DFT-Optimized structure of [Pt(CNC)(CN'Bu)Tl]⁺ (4')

Center		Coordinate	es (Angstroms)	
	Х	Y	Z	
 Pt	0.253050	0.414867	-0.483461	
Tl	-0.720046	-1.475510	1.719763	
Ν	-1.667720	1.095859	-0.609456	
Ν	3.232390	-0.441840	-0.493270	
С	-0.751161	-1.356202	-1.105919	
С	-0.283020	-2.654486	-1.343623	
Н	0.782897	-2.869229	-1.232989	
С	-1.140651	-3.684921	-1.736837	
Н	-0.744997	-4.682914	-1.919276	
С	-2.501647	-3.438181	-1.893345	
Н	-3.173042	-4.239730	-2.193260	
С	-3.004223	-2.160611	-1.670531	
Н	-4.070047	-1.977772	-1.806142	
С	-2.148501	-1.126692	-1.280284	
С	-2.629842	0.244260	-1.038122	
С	-3.923462	0.725932	-1.203413	
Н	-4.718922	0.072384	-1.550900	
С	-4.177803	2.068896	-0.934175	
Н	-5.184818	2.460113	-1.064522	
С	-3.164518	2.918600	-0.511701	
Н	-3.368370	3.967846	-0.316703	
С	-1.874713	2.410456	-0.354146	
С	-0.669220	3.135081	0.051881	
С	0.545248	2.393489	0.075397	
С	1.704150	3.069822	0.451194	
H	2.658027	2.540715	0.480526	
С	1.676973	4.423711	0.790137	
H	2.598304	4.928166	1.077874	
С	0.481519	5.134580	0.759867	
Н	0.463018	6.189769	1.023183	
С	-0.692030	4.489937	0.390435	
Н	-1.625096	5.052770	0.368455	
С	2.104821	-0.135849	-0.460503	
С	4.649948	-0.749528	-0.595445	

Table S3. DFT-Optimized coordinates of 4° , in the Ground State, S_0

С	4.934765	-1.114837	-2.048291
Н	4.354827	-1.993655	-2.355512
Н	6.000874	-1.349182	-2.156388
Н	4.694280	-0.281492	-2.719014
С	4.940779	-1.921490	0.334904
Н	4.363380	-2.808378	0.045523
Н	4.707895	-1.667750	1.376504
Н	6.006824	-2.172169	0.274410
С	5.423845	0.494972	-0.175415
Н	5.188118	1.343493	-0.829320
Н	6.499333	0.291848	-0.247396
Н	5.193130	0.772085	0.860833

Figure S10. DFT-Optimized structure of **4'** in the Excited State, T_1

Center	Х	Coordinates Y	(Angstroms) Z	
Pt	0.436488	0.339954	-0.348849	
Tl	-1.409798	-1.209928	1.673153	
Ν	-1.452730	1.025910	-0.632783	
Ν	3.375617	-0.654380	-0.066798	
С	-0.431123	-1.267399	-1.337917	
С	0.179156	-2.475120	-1.709894	
Н	1.263330	-2.578193	-1.657693	
С	-0.592329	-3.546940	-2.132985	
Н	-0.113012	-4.484804	-2.407752	
С	-1.988111	-3.423432	-2.226039	
Н	-2.583424	-4.267455	-2.567591	
С	-2.611489	-2.233465	-1.898007	
Н	-3.695572	-2.150837	-1.974522	
С	-1.849480	-1.131250	-1.473186	
С	-2.392700	0.177740	-1.160174	
С	-3.680092	0.659110	-1.386344	
Н	-4.441254	0.001032	-1.799200	
С	-3.965759	1.997639	-1.134295	
Н	-4.964625	2.383240	-1.322313	
С	-2.957398	2.862756	-0.697583	
Н	-3.157848	3.924081	-0.571876	
С	-1.683966	2.366300	-0.468488	
С	-0.481299	3.102274	-0.132106	
C	0.740881	2.371678	-0.197085	
С	1.962330	3.040959	-0.064744	
Н	2.903778	2.507942	-0.196404	
C	1.971324	4.384921	0.281304	
Н	2.919981	4.897302	0.430998	
C	0.768130	5.086649	0.433002	
Н	0.788472	6.142817	0.692759	
С	-0.447777	4.454188	0.226349	
Н	-1.375773	5.016133	0.328725	
С	2.265928	-0.293412	-0.135097	
С	4.766348	-1.073317	-0.038873	

Table S4. DFT-Optimized coordinates of 4' in the Excited State, T_1

С	4.939351	-2.152297	-1.102332
Н	4.305729	-3.021817	-0.886639
Н	5.984855	-2.483928	-1.111296
Н	4.690004	-1.768859	-2.099190
С	5.067277	-1.615946	1.353603
Н	4.434110	-2.480324	1.587775
Н	4.913409	-0.846275	2.119528
Н	6.115322	-1.937123	1.393844
С	5.617381	0.153283	-0.349294
Н	5.368483	0.566981	-1.334266
Н	6.675893	-0.134417	-0.352488
Н	5.475990	0.931969	0.410590

МО	e	V	I	Pt	CN	١C	CN	'Bu	T1
	2	4'	2	4'	2	4'	2	4'	4'
L+1	-1.19	-4.28	0	1	97	53	3	1	45
L	-1.79	-4.97	13	16	79	62	8	8	14
Н	-5.85	-8.80	24	14	74	86	2	0	0
H-1	-6.22	-9.30	19	7	72	92	8	1	0
H-2	-6.52	-9.34	8	17	79	77	13	5	1
Н-3	-6.81	-9.81	93	5	5	92	2	0	3
H-4	-6.83	-10.02	5	8	94	88	1	1	3
Н-5	-7.00	-10.34	11	79	72	10	17	2	9
H-6	-7.41	-10.62	52	52	34	35	14	13	0

Table S5. Population Analysis (%) of Frontier MOs in the Ground State for 2 and 4'

Table S6. Selected electronic transitions calculated by TD-DFT for 2 and 4' in gas phase

State	λ _{exc} (calc.)/nm	0.8.	Transition (Percentage contribution)				
	[Pt(CNC)(CN'Bu)] (2)						
S1	433.5	0.0011	$H \to L (98.5\%)$				
S2	386.3	0	$H-1 \to L (98.8\%)$				
\$3	330.5	0.0999	H → L+1 (87.1%); H-6 → L (4.4%); H-3 → L (3.9%)				
S4	326.4	0.0082	H-3 → L (70.2%); H-1 → L+1 (2.8%)				
		[Pt(CNC)	(CN'Bu)Tl] ⁺ (4')				
S1	452.9	0.0003	$H \to L (97.6\%)$				
S2	388.0	0.0007	$\text{H-2} \rightarrow \text{L} (89.1\%); \text{H-1} \rightarrow \text{L} (9.4\%)$				
\$3	353.3	0.1252	H-1 \rightarrow L (84.8%); H-2 \rightarrow L (9.1%)				
S4	335.9	0.0332	$H \rightarrow L+1 (88.9\%); H-4 \rightarrow L (2.1\%)$				

Figure S11. Representative frontier orbitals for **2**

Figure S12. Representative frontier orbitals for 4'

Figure S13. Normalized solid state emission spectra. Inset: Unnormalized spectra

Figure S14. Normalized excitation (above) and emission (below) spectra of 1 and 2.

Figure S15. Unnormalized emission spectra of 4 in CH_2Cl_2 (10⁻³ M) at 77 K

Figure S16. Normalized UV-vis spectra of 3 (a) and 4 (b) in CH₂Cl₂ solution upon adding excess of TlPF6.

Figure S17. Normalized emission spectra of **3'** ($\mathbf{3}$ + TlPF₆) and $\mathbf{4'}$ ($\mathbf{4}$ + TlPF₆) in CH₂Cl₂ at 77 K