Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Ba₂B₁₀O₁₇: A New Centrosymmetric Alkaline-Earth Metal Borate with Deep-UV Cut-Off Edge Lili Liu, ^{*a,b*} Xin Su, ^{*a*} Yun Yang, ^{*a**} Shilie Pan, ^{*a**} Xiaoyu Dong, ^{*a*} Shujuan Han, ^{*a*} Min Zhang, ^{*a*} Jing Kang, ^{*a,b*} Zhihua Yang ^{*a**}

^a Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

*To whom correspondence should be addressed E-mail: yangyun@ms.xjb.ac.cn, slpan@ms.xjb.ac.cn (Shilie Pan) Tel: (86)-991-3674558 Fax: (86)-991-3838957

Table S1 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for Ba₂B₁₀O₁₇. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

O _{1j} tensor.				
	Х	У	Z	U(eq)
Ba(1)	2483(1)	9802(1)	2217(1)	10(1)
Ba(2)	2731(1)	5234(1)	2974(1)	12(1)
B(1)	2228(6)	1973(5)	-1299(4)	8(1)
B(2)	130(6)	2669(5)	4827(4)	8(1)
B(3)	-2941(6)	7041(5)	3825(5)	10(1)
B(4)	4818(6)	2323(5)	267(4)	8(1)
B(5)	-1457(6)	2433(5)	-243(4)	8(1)
B(6)	2622(6)	4957(5)	-288(5)	11(1)
B(7)	2413(7)	50(5)	5447(5)	11(1)
B(8)	-1965(6)	3872(5)	2813(4)	8(1)
B(9)	3582(7)	7468(5)	5172(5)	10(1)
B(10)	-2561(6)	1106(5)	1989(4)	10(1)
O(1)	3767(4)	3764(3)	544(3)	12(1)
O(2)	1529(4)	6039(3)	347(3)	12(1)
O(3)	3373(4)	7697(3)	710(3)	10(1)
O(4)	6565(4)	3162(3)	3349(3)	10(1)
O(5)	-207(4)	3664(3)	3446(3)	11(1)
O(6)	3770(4)	8963(3)	4899(3)	11(1)
O(7)	5475(4)	1350(3)	1623(3)	9(1)
O(8)	1846(4)	7442(3)	4461(3)	12(1)
O(9)	1543(4)	1298(3)	4565(3)	13(1)
O(10)	6570(4)	7825(3)	2529(3)	12(1)
O(11)	-1798(4)	135(3)	3183(3)	11(1)
O(12)	-218(4)	8061(3)	1269(3)	10(1)
O(13)	-1058(4)	1611(3)	1153(3)	11(1)
O(14)	7480(4)	4976(3)	1664(3)	13(1)
O(15)	3265(4)	1692(3)	-133(3)	12(1)
O(16)	-1026(4)	6653(3)	4311(3)	15(1)
O(17)	4483(4)	3441(3)	5372(3)	15(1)

_

Ba(1)-O(10)	2.879(3)	O(13)-Ba(1)-O(3)	102.26(8)
Ba(1)-O(11)	2.871(2)	O(13)-Ba(1)-O(15)	68.05(8)
Ba(1)-O(12)	3.174(3)	O(3)-Ba(1)-O(15)	88.48(8)
Ba(1)-O(13)	2.697(3)	O(13)-Ba(1)-O(6)	131.29(8)
Ba(1)-O(15)	2.748(3)	O(3)-Ba(1)-O(6)	116.66(8)
Ba(1)-O(3)	2.728(3)	O(15)-Ba(1)-O(6)	136.50(8)
Ba(1)-O(6)	2.784(3)	O(13)-Ba(1)-O(7)	106.41(8)
Ba(1)-O(7)	2.790(2)	O(3)-Ba(1)-O(7)	110.41(7)
Ba(1)-O(8)	2.934(3)	O(15)-Ba(1)-O(7)	49.89(8)
Ba(1)-O(9)	2.963(3)	O(6)-Ba(1)-O(7)	87.07(7)
Ba(2)-O(1)	3.019(3)	O(13)-Ba(1)-O(11)	48.82(8)
Ba(2)-O(12)	3.175(3)	O(3)-Ba(1)-O(11)	105.34(7)
Ba(2)-O(14)	3.262(3)	O(15)-Ba(1)-O(11)	116.81(8)
Ba(2)-O(16)	2.853(3)	O(6)-Ba(1)-O(11)	91.41(7)
Ba(2)-O(16)#2	3.215(3)	O(7)-Ba(1)-O(11)	140.62(8)
Ba(2)-O(17)	2.794(3)	O(13)-Ba(1)-O(10)	163.33(8)
Ba(2)-O(2)	2.714(3)	O(3)-Ba(1)-O(10)	65.08(8)
Ba(2)-O(3)	3.015(3)	O(15)-Ba(1)-O(10)	99.65(8)
Ba(2)-O(4)	2.794(3)	O(6)-Ba(1)-O(10)	65.37(7)
Ba(2)-O(5)	2.778(2)	O(7)-Ba(1)-O(10)	70.54(8)
Ba(2)-O(8)	2.800(3)	O(11)-Ba(1)-O(10)	142.47(8)
B(1)-O(10)#9	1.396(5)	O(13)-Ba(1)-O(8)	114.35(7)
B(1)-O(12)#1	1.356(5)	O(3)-Ba(1)-O(8)	82.60(8)
B(1)-O(15)	1.362(5)	O(15)-Ba(1)-O(8)	171.06(8)
B(2)-O(16)#8	1.473(5)	O(6)-Ba(1)-O(8)	49.07(7)
B(2)-O(5)#7	1.501(5)	O(7)-Ba(1)-O(8)	133.37(7)
B(2)-O(8)#8	1.450(5)	O(11)-Ba(1)-O(8)	66.54(8)
B(2)-O(9)	1.471(5)	O(10)-Ba(1)-O(8)	76.10(7)
B(3)-O(10)#10	1.373(5)	O(13)-Ba(1)-O(9)	87.70(8)
B(3)O-(16)	1.348(5)	O(3)-Ba(1)-O(9)	162.02(8)
B(3)-O(17)#2	1.362(5)	O(15)-Ba(1)-O(9)	109.23(8)
B(4)-O(1)	1.468(5)	O(6)-Ba(1)-O(9)	47.80(8)
B(4)-O(15)#6	1.489(5)	O(7)-Ba(1)-O(9)	80.37(7)
B(4)-O(3)#3	1.464(4)	O(11)-Ba(1)-O(9)	69.95(7)
B(4)-O(7)#6	1.504(5)	O(10)-Ba(1)-O(9)	107.50(8)
B(5)-O(2) #1	1.468 (5)	O(8)-Ba(1)-O(9)	79.65(8)
B(5)-O(12)#1	1.482(4)	O(13)-Ba(1)-O(12)	69.32(8)
B(5)-O(12)	1.475 (5)	O(3)-Ba(1)-O(12)	46.19(7)
B(5)-O(3) #1	1.458(5)	O(15)-Ba(1)-O(12)	104.58(7)
B(6)-O(1)	1.363(5)	O(6)-Ba(1)-O(12)	118.54(7)
B(6)-O(14)#3	1.371(5)	O(7)-Ba(1)-O(12)	150.16(7)

Table S2 Bond lengths (Å) and angles (°) for $Ba_2B_{10}O_{17}$.

B(6)-O(2)	1.352(5)	O(11)-Ba(1)-O(12)	59.36(7)
B(7)-O(11)#8	1.370(5)	O(10)-Ba(1)-O(12)	104.77(7)
B(7)-O(6)	1.367(5)	O(8)-Ba(1)-O(12)	69.48(7)
B(7)-O(9)	1.361(6)	O(9)-Ba(1)-O(12)	127.64(7)
B(8)-O(14)#10	1.395(5)	O(2)-Ba(2)-O(5)	85.37(8)
B(8)-O(4)#10	1.361(5)	O(2)-Ba(2)-O(17)	159.02(9)
B(8)-O(5)	1.347(5)	O(5)-Ba(2)-O(17)	86.28(8)
B(9)-O(17)#5	1.475(5)	O(2)-Ba(2)-O(4)	114.75(8)
B(9)-O(4)#5	1.472(5)	O(5)-Ba(2)-O(4)	105.05(8)
B(9)-O(6)	1.477(5)	O(17)-Ba(2)-O(4)	49.56(7)
B(9)-O(8)	1.444(5)	O(2)-Ba(2)-O(8)	115.95(8)
B(10)#4-O(7)	1.349(5)	O(5)-Ba(2)-O(8)	113.83(8)
B(10)-O(11)	1.396(5)	O(17)-Ba(2)-O(8)	85.03(8)
B(10)-O(13)	1.365(5)	O(4)-Ba(2)-O(8)	116.98(8)
O(8)-B(9)-O(4)#5	112.6(3)	O(2)-Ba(2)-O(16)	98.92(8)
O(8)-B(9)-O(17)#5	109.2(3)	O(5)-Ba(2)-O(16)	67.82(8)
O(4)#5-B(9)-O(17)#5	105.2(3)	O(17)-Ba(2)-O(16)	95.68(8)
O(8)-B(9)-O(6)	109.0(3)	O(4)-Ba(2)-O(16)	145.23(8)
O(4)#5-B(9)-O(6)	112.7(3)	O(8)-Ba(2)-O(16)	48.20(7)
O(17)#5-B(9)-O(6)	108.0(3)	O(2)-Ba(2)-O(3)	49.77(8)
O(7)#10-B(10)-O(13)	123.7(4)	O(5)-Ba(2)-O(3)	132.37(7)
O(7)#10-B(10)-O(11)	122.4(3)	O(17)-Ba(2)-O(3)	141.33(7)
O(13)-B(10)-O(11)	113.3(3)	O(4)-Ba(2)-O(3)	107.84(7)
O(13)-B(5)-O(12)#1	113.1(3)	O(8)-Ba(2)-O(3)	79.97(8)
O(3)#1-B(5)-O(12)#1	105.7(3)	O(16)-Ba(2)-O(3)	100.25(8)
O(2)#1-B(5)-O(12)#1	104.2(3)	O(2)-Ba(2)-O(1)	46.85(8)
O(2)-B(6)-O(1)	115.4(4)	O(5)-Ba(2)-O(1)	79.38(7)
O(2)-B(6)-O(14)#3	122.6(4)	O(17)-Ba(2)-O(1)	112.58(8)
O(1)-B(6)-O(14)#3	121.9(4)	O(4)-Ba(2)-O(1)	71.60(7)
O(9)-B(7)-O(6)	117.7(4)	O(8)-Ba(2)-O(1)	159.32(8)
O(9)-B(7)-O(11)#8	120.2(4)	O(16)-Ba(2)-O(1)	134.96(7)
O(6)-B(7)-O(11)#8	121.8(4)	O(3)-Ba(2)-O(1)	79.43(7)
O(5)-B(8)-O(4)#10	122.5(4)	O(2)-Ba(2)-O(12)	45.88(8)
O(5)-B(8)-O(14)#10	121.4(4)	O(5)-Ba(2)-O(12)	94.78(7)
O(4)#10-B(8)-O(14)#10	115.5(3)	O(17)-Ba(2)-O(12)	154.37(7)
O(3)#3-B(4)-O(15)#6	113.5(3)	O(4)-Ba(2)-O(12)	151.51(7)
O(1)-B(4)-O(15)#6	109.5(3)	O(8)-Ba(2)-O(12)	71.08(7)
O(3)#3-B(4)-O(7)#6	110.1(3)	O(16)-Ba(2)-O(12)	61.58(7)
O(1)-B(4)-O(7)#6	107.0(3)	O(3)-Ba(2)-O(12)	44.56(6)
O(15)#6-B(4)-O(7)#6	102.6(3)	O(1)-Ba(2)-O(12)	92.72(7)
O(13)-B(5)-O(3)#1	111.5(3)	B(5)#1-Ba(2)-O(12)	27.01(8)
O(13)-B(5)-O(2)#1	111.0(3)	O(2)-Ba(2)-O(16)#2	131.82(7)
O(3)#1-B(5)-O(2)#1	111.0(3)	O(5)-Ba(2)-O(16)#2	46.63(7)

O(17)-Ba(2)-O(16)#2	44.95(7)	O(1)-Ba(2)-O(14)	66.42(7)
O(4)-Ba(2)-O(16)#2	86.61(7)	O(12)-Ba(2)-O(14)	107.77(7)
O(16)#2-Ba(2)-O(14)	130.07(7)	O(8)-Ba(2)-O(16)#2	86.28(7)
O(12)#1-B(1)-O(15)	122.4(3)	O(16)-Ba(2)-O(16)#2	63.43(10)
O(12)#1-B(1)-O(10)#9	122.1(4)	O(3)-Ba(2)-O(16)#2	163.42(7)
O(15)-B(1)-O(10)#9	115.3(3)	O(1)-Ba(2)-O(16)#2	113.70(7)
O(8)#8-B(2)-O(9)	115.0(3)	O(12)-Ba(2)-O(16)#2	121.80(7)
O(8)#8-B(2)-O(16)#8	104.3(3)	O(2)-Ba(2)-O(14)	86.76(7)
O(9)-B(2)-O(16)#8	112.8(3)	O(5)-Ba(2)-O(14)	139.29(8)
O(8)#8-B(2)-O(5)#7	110.6(3)	O(17)-Ba(2)-O(14)	87.08(7)
O(9)-B(2)-O(5)#7	106.0(3)	O(4)-Ba(2)-O(14)	44.45(7)
O(16)#8-B(2)-O(5)#7	108.0(3)	O(8)-Ba(2)-O(14)	105.51(7)
O(16)-B(3)-O(17)#2	118.6(4)	O(16)-Ba(2)-O(14)	152.87(8)
O(16)-B(3)-O(10)#10	124.4(4)	O(3)-Ba(2)-O(14)	63.44(7)
O(17)#2-B(3)-O(10)#10	116.9(3)	O(3)#3-B(4)-O(1)	113.3(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z	#2 -x,-y+1,-z+1	#3 -x+1,-y+1,-z
#4 x+1,y,z	#5 -x+1,-y+1,-z+1	#6 x,y-1,z
#7 x,y+1,z	#8 -x,-y+2,-z+1	#9 -x+1,-y+2,-z
#10 x-1,y,z		

O(9)	O(10)	0(11)	0(12)	O(13)	O(14)	0(15)	O(16)	O(17)	Σcation
.16	0.201	0.205	0.09	0.328		0.286			2.261
			0.09		0.071		0.215 /0.081		2.066
	0.935		1.041			1.025			3.001
763							0.759		3.034
	0.995						1.064	1.025	3.084
						0.727			2.972
			0.741	0.79					3.056
					1				3.075
.027		1.003							3.041
					0.937				3.031
								0.755	3.088
				0.935			1.016		3.012
1.95	2.131	2.143	1.962	2.134	2.008	2.038	2.119	2.033	

Table S3 Bond valence analysis of $Ba_2B_{10}O_{17}$. ^{a,b}

Atom	0(1)	0(2)	0(3)	O(4)	O(5)	O(6)	O(7)
3a(1)			0.302			0.26	0.255
3a(2)	0.138	0.314	0.139	0.253	0.264		
B(1)							
B(2)					0.704		
B(3)							
B(4)	0.769		0.778				0.698
B(5)		0.755	0.769				
B(6)	1.022	1.053					
B(7)						1.011	
B(8)				1.027	1.067		
B(9)				0.761		0.751	
3(10)							1.061
anions	1.929	2.122	1.988	2.041	2.035	2.022	2.014

a Bond valences calculated with the program Bond Valence Calculator Version 2.00, Hormillosa, C., Healy, S., Stephen, T. McMaster University (1993).

b Valence sums calculated with the formula: $Si = exp[(R_0-R_i)/B]$, where $S_i = valence$ of bond "i" and B = 0.37. Superscripts indicate the number of equivalent bonds for anions.

Table S4 (a) State energies (eV) of the highest valence band (H-VB) and the lowest conduction band (L-CB) at same k-points of $Ba_2B_{10}O_{17}$. (b) The calculated lattice constants (*a*, *b* and *c*) and angles (α , β and γ) between experimental and theoretical results for $Ba_2B_{10}O_{17}$.

Compound	K-piont	H-VB (eV)	L-CB (eV)
	G (0.000, 0.000, 0.000)	0	6.01063
	F (0.000, 0.500, 0.000)	-0.03226	6.02353
$Ba_{2}B_{10}O_{17}$	Q (0.000,0.500, 0.500)	0.0119	5.96668
	Z (0.000,0.000, 0.500)	-0.00808	5.98812
	G (0.000,0.000, 0.000)	0	6.01063
(b)			
Lattice parameters	Experimental Value	Calculated	l Value
a (Å)	6.7128(3)	6.7128	8(0)
b (Å)	9.8698(4)	9.8698	8(0)
c (Å)	9.9998(4)	9.9998	8(0)
α (°)	76.860(3)	76.860(0)	
β (°)	83.200(3)	83.200	0(0)
γ (°)	73.332(3)	73.332	2(0)
Volume (Å ³)	617.07(4)	617.07	(0)

(a)

	avnaminant	calculation	hand shares	band and an
bond type	experiment h_{and} length (\hat{h})	bond length	bond charge	bond order
	bond length (A)	(Å)	(e)	(e)
Ba(1)-O(10)	2.879(3)	2.8787(3)	1.52	0.02
Ba(1)-O(11)	2.871(2)	2.8713(9)	1.52	-0.01
Ba(1)-O(12)	3.174(3)	3.1744(1)	1.52	0.02
Ba(1)-O(13)	2.697(3)	2.6964(4)	1.52	0.05
Ba(1)-O(15)	2.748(3)	2.7484(4)	1.52	0.04
Ba(1)-O(3)	2.728(3)	2.7286(4)	1.52	0.05
Ba(1)-O(6)	2.784(3)	2.7842(0)	1.52	0.00
Ba(1)-O(7)	2.790(2)	2.7900(6)	1.52	0.06
Ba(1)-O(8)	2.934(3)	2.9346(3)	1.52	0.04
Ba(1)-O(9)	2.963(3)	2.9629(5)	1.52	0.03
Ba(2)-O(1)	3.019(3)	3.0189(2)	1.56	0.03
Ba(2)-O(12)	3.175(3)	3.1749(5)	1.56	0.00
Ba(2)-O(14)	3.262(3)	3.2617(9)	1.56	-0.03
Ba(2)-O(16)	2.853(3)	2.8528(4)	1.56	0.03
Ba(2)-O(16)#2	3.215(3)	2.8528(4)	1.56	0.03
Ba(2)-O(17)	2.794(3)	2.7945(6)	1.56	0.02
Ba(2)-O(2)	2.714(3)	2.7142(6)	1.56	0.00
Ba(2)-O(3)	3.015(3)	3.0148(0)	1.56	0.03
Ba(2)-O(4)	2.794(3)	2.7938(0)	1.56	0.02
Ba(2)-O(5)	2.778(2)	2.7771(6)	1.56	0.06
Ba(2)-O(8)	2.800(3)	2.7996(4)	1.56	0.03
B(1)-O(10)#9	1.396(5)	1.3962(1)	1.02	0.70
B(1)-O(12)#1	1.356(5)	1.3559(1)	1.02	0.82
B(1)-O(15)	1.362(5)	1.3621(4)	1.02	0.81
B(2)-O(16)#8	1.473(5)	1.4725(8)	0.94	0.61
B(2)-O(5)#7	1.501(5)	1.5008(7)	0.94	0.57
B(2)-O(8)#8	1.450(5)	1.4500(5)	0.94	0.68
B(2)-O(9)	1.471(5)	1.4715(3)	0.94	0.62
B(3)-O(10)#10	1.373(5)	1.3730(1)	1.02	0.74
B(3)O-(16)	1.348(5)	1.3476(9)	1.02	0.82
B(3)-O(17)#2	1.362(5)	1.3618(1)	1.02	0.78
B(4)-O(1)	1.468(5)	1.4678(1)	0.95	0.61
B(4)-O(15)#6	1.489(5)	1.4896(7)	0.95	0.59
B(4)-O(3)#3	1.464(4)	1.4641(0)	0.95	0.67
B(4)-O(7)#6	1.504(5)	1.5040(0)	0.95	0.57
B(5)-O(12)#1	1.482(4)	1.4813(5)	0.92	0.59
B(5)-O(13)	1.458(5)	1.4586(4)	0.92	0.60
B(5)-O(2) #1	1.468 (5)	1.4749(9)	0.92	0.62
B(5)-O(3) #1	1.458(5)	1.4672(9)	0.92	0.67
B(6)-O(1)	1.363(5)	1.3624(5)	1.02	0.80
B(6)-O(14)#3	1.371(5)	1.3713(9)	1.02	0.74

 Table S5 The calculated bond lengths in comparison with experimental data, bond charge and bond order.

B(6)-O(2)	1.352(5)	1.3529(5)	1.02	0.80
B(7)-O(11)#8	1.370(5)	1.3697(4)	1.01	0.75
B(7)-O(6)	1.367(5)	1.3673(2)	1.01	0.79
B(7)-O(9)	1.361(6)	1.3607(2)	1.01	0.81
B(8)-O(14)#10	1.395(5)	1.3948(2)	1.01	0.72
B(8)-O(4)#10	1.361(5)	1.3611(5)	1.01	0.81
B(8)-O(5)	1.347(5)	1.3469(6)	1.01	0.82
B(9)-O(17)#5	1.475(5)	1.4744(8)	0.92	0.59
B(9)-O(4)#5	1.472(5)	1.4718(2)	0.92	0.60
B(9)-O(6)	1.477(5)	1.4775(6)	0.92	0.61
B(9)-O(8)	1.444(5)	1.4442(4)	0.92	0.68
B(10) -O(7)	1.349(5)	1.3498(8)	1.00	0.83
B(10)-O(11)	1.396(5)	1.3961(9)	1.00	0.71
B(10)-O(13)	1.365(5)	1.3654(8)	1.00	0.80

Figure S1 Photograph of the $Ba_2B_{10}O_{17}$ crystal. (The minimum scale of the ruler is one millimeter.)

Figure S2 Calculated and measured (after melting and before melting) powder X-ray diffraction patterns for $Ba_2B_{10}O_{17}$.

Figure S3 Photograph of the $Ba_2B_{10}O_{17}$ crystal. (The minimum scale of the ruler is one millimeter.)

Figure S4 Unit cell of Ba₂B₁₀O₁₇.

Figure S5 (a) $[Ba(1)O_{10}]$ polyhedra. (b) $[Ba(2)_2O_{20}]$ dimers. (c) Perspective views of $Ba_2B_{10}O_{17}$ along *a*-axis.

Figure S6 (a) Interconnection between A-tunnel and B-tunnel. (b) The 3D network structure of B-O group in $Ba_2B_{10}O_{17}$. (c) The overall view of $Ba_2B_{10}O_{17}$ seen along the *a*-axis.

Figure S7 The unit cells of (a) $Cs_2K_2B_{10}O_{17}$, (b) $Na_2Cs_2B_{10}O_{17}$ and (c) $Na_2Tl_2B_{10}O_{17}$.

Figure S8 Infrared spectroscopy of $Ba_2B_{10}O_{17}$.

Figure S9 Transmittance spectroscopy of $Ba_2B_{10}O_{17}$.

Figure S10 The TG-DSC curves for $Ba_2B_{10}O_{17}$.

Figure S11 Calculated band structure of $Ba_2B_{10}O_{17}$.

Figure S12 Brillouin zone of Ba₂B₁₀O₁₇.

Figure S13 Total density of states and partial density of states of $Ba_2B_{10}O_{17}$.

