Supporting Information

Pt₂Ag Acetylides-Doped Silica Nanoparticles: Enabling Luminescence of Pt₂Ag Complexes in Water and Sensors for Highly Sensitive Detection of Cyanide Anion

Xiao-Xia Lin^a, Zhi-Hong Li^a, Xiao-Yan Huang^a, Yi Jiang^a, Qiao-Hua Wei*^{a,b}, and Guo-Nan Chen^a

^aMinistry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, and Department of Chemistry, Fuzhou University, Fuzhou, 3500108, China.

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter and Graduate School of CAS, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Received Feb 00, 2014

Characterizations

Size distribution determined by DLS

Fig. S1 Size distribution of 1@SiO₂ nanoparticles determined by DLS.

Characterizations

TEM and AFM Images

Fig. S2 Transmission electron microscopic (A) and atomic force microcopic (B) image of **1@SiO**₂ nanoparticles in aqueous solution.

Photophysical Properties

UV-Vis absorption spectra

Fig. S3 UV–Vis absorption spectra of 1 (black line), 2 (red line) in CH_2Cl_2 solution and $1@SiO_2$ nanoparticles (green line), $2@SiO_2$ nanoparticles (blue line) in aqueous solution at 298 K.

Photophysical Properties

Emission spectra

Fig. S4 Emission spectra of compounds 1 (solid line) and 2 (dash line) in the solid state at 298 K.

Photophysical Properties

Emission spectra

Fig. S5 (A) Excitation and emission spectra of $1@SiO_2$ nanoparticles in aqueous solution: λ_{em} 518 nm (red dash line), λ_{exc} 363 nm (black solid line), and compound 1 in acetonitrile / water (1:1, v:v) solution: λ_{em} 518 nm (cyan dash dot line), λ_{exc} 350 nm (blue dot line); (B) Photos of the emission of $1@SiO_2$ nanoparticles in water (left) and compound 1 in acetonitrile / water (1:1, v:v) solution (right).

Fig. S6 Time-dependent emission response of the $1@SiO_2$ nanoparticles to 2.0 µM CN⁻ in NaHCO₃– NaOH buffer solution (pH 11.0). The inset shows I / I₀ plotted against time in the presence of 2.0 µM CN⁻, where I₀ and I are the emission intensity of the $1@SiO_2$ nanoparticles at 518 nm in the absence and presence of CN⁻, respectively.

Fig. S7 The emission response of $1@SiO_2$ nanoparticles to 5.0 µM CN⁻ at different pH value in NaHCO₃-NaOH buffer solution.

Fig. S8 Excitation and emission spectra of the acetonitrile / NaHCO₃–NaOH buffer (1:1, v:v, pH 11.0) solution of 50.0 μ M complex **1** without [λ_{em} 518 nm (cyan dash line), λ_{exc} 350 nm (black solid line)], and with 10.0 μ M CN⁻ [λ_{em} 518 nm (blue dot line), λ_{exc} 350 nm (red short dot line)].

Fig. S9 UV–Vis absorption spectra of $1@SiO_2$ nanoparticles in NaHCO₃–NaOH buffer solution (pH 11.0) (black line), and upon addition of 10.0 μ M CN⁻ (red line).

Compound	$2 \cdot 2 C H_2 C l_2$
empirical formula	$C_{96}H_{78}AgCl_5N_2O_4P_4Pt_2$
fw	2122.78
space group	P2(1)/c
<i>a</i> , Å	13.4625(14)
<i>b</i> , Å	25.739(3)
<i>c</i> , Å	25.325(3)
β , deg	94.556(2)
<i>V</i> , Å ³	8747.6(16)
Ζ	4
$\rho_{\rm calcd}$, g/cm ³	1.612
μ , mm ⁻¹	3.691
radiation (λ , Å)	0.71073
temp, K	273 (2)
R1 (F _o)	0. 1090
$wR2(F_o^2)$	0.2017
GOF	1.034

 Table S1. Crystallographic Data for Compound 2•2CH2Cl2

^a $\overline{R1 = \Sigma |F_o - F_c| / \Sigma F_o}$ ^b $wR2 = \Sigma [w(F_o^2 - F_c^2)_2] / \Sigma [w(F_o^2)]^{1/2}$