Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Solid-StateEmissionEnhancementinVaultedtrans-Bis(salicylaldiminato)platinum(II)CrystalswithHalogenFunctionality

Naruyoshi Komiya, Minoru Okada, Kanako Fukumoto, Shotaro Iwata and Takeshi Naota*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Contents

Table S1	Photophysical data of 1-4 in 2-MeTHF	S2
Table S2	Photophysical data of 1g, 2g, and 3g in crystalline state	S 3
Fig. S1	Frontier orbitals and their eigenvalues for complexes 3a-d .	S4
Table S3	Excitation energy, oscillator strength and major electronic configuration	
	of 3a–d .	S5
Fig. S2	Relationship between the T_1 - S_0 energy gap and λ_{max} for 3a-d in	
	2-MeTHF at 77 K.	S 7

complex	$\lambda_{\rm abs}~({\rm nm})$	$\lambda_{\rm em} \left({\rm nm} \right)^{b,c}$	${\it I}\!$	
1b	317, 432	$-^{e}(530, 561)$	<0.01 (0.42)	
2b	317, 430	$-^{e}(529, 563)$	<0.01 (0.45)	
3a	332, 436	534 (519, 561)	<0.01 (0.61)	
3 b	317, 430	$-^{e}(521, 562)$	<0.01 (0.57)	
3c	336, 457	$-^{e}(538, 582)$	<0.01 (0.53)	
3d	338, 447	552 (538, 582)	<0.01 (0.48)	
3e	307, 420	$-^{e}(511, 541)$	<0.01 (0.58)	
3f	319, 333, 435	$-^{e}(520, 558)$	<0.01 (0.58)	
4b	317, 332, 430	$-^{e}(515, 552)$	<0.01 (0.66)	
^{<i>a</i>} A 2 × 10 ⁻⁴ M solution in 2-MeTHF at 298 K. ^{<i>b</i>} $\lambda_{ex} = 420$ nm. ^{<i>c</i>} Values in parehtheses are those measured at 77 K. ^{<i>d</i>} Determined by the absolute method by using an integrating sphere. ^{<i>c</i>} No emission.				

 Table S1
 Photophysical data of 1–4 in 2-MeTHF^a

complex	$\lambda_{\rm abs}$ (nm)	$\lambda_{\rm em}({\rm nm})$	$arPi^{\flat}$	$\tau(\mu s)^c$	CIE (x,y)	
$\mathbf{1g}^d$	319, 443, 511	e	<0.01 (0.18)	e	e	
$2\mathbf{g}^d$	324, 441, 522	558, 582	< 0.01 (0.60)	e	0.50, 0.50	
$3\mathbf{g}^d$	319, 441, 528	564, 585	0.32 (0.51)	1.7	0.51, 0.48	
^{<i>a</i>} Data obtained at 298 K under excitation at 420 nm. All crystals were obtained by recrystallization from EtOH. ^{<i>b</i>} Determined by the absolute method using an integrating sphere. Values in parentheses are those measured at 77 K. $^{c}\lambda_{ex}$ =435 nm. ^{<i>d</i>} Racemic crystal. ^{<i>c</i>} No emission.						

Table S2Photophysical data of 1g, 2g, and 3g in crystalline state

Fig. S1. Frontier orbitals and their eigenvalues (eV) for **3a–d** estimated from DFT calculations (B3LYP/6-31G*, LanL2DZ) on the basis of optimized structures.

complex	state	excitation energy / eV	oscillator strength	major configuration ^b	coefficient
3a	Singlet				
	1	2.8307	f = 0.0363	135→136	0.69500
	2	3.0924	0.0006	135→137	0.69573
	3	3.1208	0.0021	135→138	0.67582
	4	3.3460	0.0005	134→136	0.69721
	Triplet				
	1	2.3459		134→137	-0.21880
				135→136	0.64943
	2	2.5175		131→136	-0.10497
				134→136	-0.34839
				135→137	0.59239
	3	2.7422		128→138	0.13985
				130→138	0.23947
				135→138	0.63353
	4	3.0102		131→137	-0.29064
				133→136	0.55896
				134→137	0.15145
3b	Singlet				
	1	2.8686	f = 0.0374	135→136	0.69546
	2	3.1518	0.0007	135→137	0.69537
	3	3.1939	0.0017	130→138	0.16150
				135→138	0.67864
	4	3.3531	0.0010	132→138	0.11633
				134→136	0.69015
	Triplet state				
	1	2.3812		134→137	-0.22414
				135→136	0.64983
	2	2.5516		134→136	-0.34232
				135→137	0.59727
	3	2.7441		130→138	0.26203
				135→138	0.63964
	4	3.0880		131→137	-0.30207
				133→136	0.56927
				135→136	0.11871
a Datima	ted from TD I	DET (D2IVD/6 21C* I a)	nI (D7) soloulations	on the basis of ontimize	1 - 4 4

Table S3Excitation energy, oscillator strength and major electronic configuration of $3a-d^a$

^{*a*} Estimated from TD–DFT (B3LYP/6–31G*, LanL2DZ) calculations on the basis of optimized structures. ^{*b*} HOMO is MO135.

complex	state	excitation energy / eV	oscillator strengt	major configuration ^b	coefficient
3c	Singlet state				
	1	2.7540	f = 0.0344	135→136	0.69558
	2	3.0422	0.0008	135→137	0.69618
	3	3.1587	0.0018	131→138	0.17643
				135→138	0.67514
	4	3.2703	0.0010	134→136	0.69824
	Triplet state				
	1	2.2470		134→137	-0.23738
				135→136	0.65259
	2	2.4093		134→136	-0.36831
				135→137	0.59023
	3	2.7202		131→138	0.28459
				135→138	0.63195
	4	3.0908		130→137	0.27026
				133→136	0.55153
				134→140	0.15619
				135→139	-0.17529
3d	Singlet state				
	1	2.7825	f = 0.0330	135→136	0.69841
	2	3.0699	0.0006	135→137	0.69703
	3	3.2857	0.0010	130→138	0.14535
				135→138	0.67866
	4	3.3994	0.0004	134→136	0.69638
	Triplet state				
	1	2.2972		134→137	-0.21844
				135→136	0.65719
	2	2.4706		134→136	-0.33711
				135→137	0.60476
	3	2.7898		130→138	0.23935
				135→138	0.64288
	4	2.9985		131→137	0.29142
				133→136	0.56404
				134→137	-0.14392

Table S3 (continued)

^{*a*} Estimated from TD–DFT (B3LYP/6–31G*, LanL2DZ) calculations on the basis of optimized structures ^{*b*} HOMO is MO135.

Fig. S2. Relationship between the T_1 - S_0 energy gap and emission maxima (λ_{max}) for **3a-d** in 2-MeTHF at 77 K. The energy gap was estimated from TD-DFT calculations (B3LYP/6-31G*, LanL2DZ) on the basis of optimized structures.