Boosting the salt recognition abilities of L-ornithine based multitopic molecular receptors by harnessing a double cooperative effect by Biotr Biotak Marcin Kanbarz, Jan Bomgáchiž

Piotr Piątek, Marcin Karbarz, Jan Romański*

Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

GENERAL INFORMATIONS

Unless specifically indicated, all other chemicals and reagents used in this study were purchased from commercial sources and used as received. 18-Aza-crown-6 was prepared according to literature procedure.¹ Compounds **1a**, **1c** and **S2** were prepared according to literature procedure.² Purification of products was performed using column chromatography on silica gel (Merck Kieselgel 60, 230-400 mesh) with mixtures of chloroform/methanol. Thin-layer chromatography (TLC) was performed on silica gel plates (Merck Kieselgel 60 F254).

¹H and ¹³C NMR spectra used in the characterization of products were recorded on Varian Unity 200 spectrometer using a TMS (δ =0.00) or residual protonated solvent as internal standard. The following abbreviations are used to indicate the multiplicity: s - singlet; d - doublet; t - triplet; q - quartet; m - multiplet, b – broad signal.

High resolution mass spectra (HRMS) were measured on a Quattro LC Micromass unit using ESI technique.

UV-vis analyses were performed using Thermo Spectronic Unicam UV500 Spectrophotometer.

Atomic absorption measurements were performed using Perkin Elmer AAnalyst 300 spectometer.

The conductance was measured using a conductance meter, Radiometer model CDM230, with a CDC241-9 conductivity cell.

SYNTHESIS

Receptor 1b

Scheme S1. Synthesis of receptor 1b. *Reagents and conditions*: a) DCC, 1-aza-18-crown-6, CH_2Cl_2 , 0°C to r.t., 92%; b) TFA- CH_2Cl_2 (1:1), r.t., quantitative; c) 4-nitrophenyl isocyanate, THF, 73%.

Scheme S2. Synthesis of receptor 1d. *Reagents and conditions*: a) DCC, 1-aza-18-crown-6, CH_2Cl_2 , 0°C to r.t., 92%; b) H_2 , Pd/C, MeOH-THF, r.t., quantitative; c) trifluoroacetyl anhydride, Et_3N , CH_2Cl_2 , 0°C to r.t., 72%; d) TFA- CH_2Cl_2 (1:1), r.t., quantitative; e) 4-nitrophenyl isocyanate, Et_3N , THF, 60%.

Receptor 1e

Scheme S3. Synthesis of receptor **1e**. *Reagents and conditions*: a) DCC, 1-aza-18-crown-6, CH_2Cl_2 , 0°C to r.t., 91%; b) H_2 , Pd/C, MeOH-THF, r.t., quantitative; c) 4-nitrophenyl isocyanate, THF, 81%; d) TFA- CH_2Cl_2 (1:1), r.t., quantitative; e) trifluoroacetyl anhydride, Et_3N , CH_2Cl_2 , 0°C to r.t., 73%.

Receptor 1f

Scheme S4. Synthesis of receptor 1f. *Reagents and conditions*: a) DCC, 1-aza-18-crown-6, CH_2Cl_2 , 0°C to r.t., 92%; b) H_2 , Pd/C, MeOH-THF, r.t., quantitative; c) trifluoromethanesulfonyl chloride, Et_3N , CH_2Cl_2 , 0°C to r.t., 91%; d) TFA- CH_2Cl_2 (1:1), r.t., quantitative; e) 4-nitrophenyl isocyanate, Et_3N , THF, 72%.

Receptor 1d:

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

NMR TITRATIONS

The ¹H NMR titrations were performed on a Varian UnityPlus 200MHz spectrometer, at 298K in CD₃CN. The anion TBA and cation PF6 salts were dried under high vacuum at 30-45 °C prior to use. In each case, a 500 µL of freshly prepared 2.7 mM solution of receptor 1 was added to a 5mm NMR tube. Where applicable the solution also contained 1 molar equivalent of sodium hexafluorophosphate. Small aliquots of 10-20 mM solution of tetrabutylammonium anion salts, containing 1 at 2.7 mM concentration, were added and a spectrum was acquired after each addition. Titration isotherms for NH protons were fitted to a 1:1 binding model using the HypNMR 2000 program. The 1:1 binding stoichiometries were verified by a Job plot analysis.

Selected binding isotherms:

	K _{TBA}	K _{Na}	K _{Na} /K _{TBA}	
NO_2^-	1 450	19 000	13,1	

	K _{TBA}	K _{Na}	K _{Na} /K _{TBA}	
NO ₃ -	150	1 250	8,2	

	K _{TBA}	K _{Na}	K _{Na} /K _{TBA}	
Br-	390	3 450	8,8	

UV-VIS MEASUREMENTS

UV/vis spectra changes of receptor 1d CH_3CN solution in the presence of excess of $NaPF_6$ and $TBANO_2$.

EXTRACTION and TRANSPORT EXPERIMENTS

The 1.5 mM aqueous solution of NaNO₂ or selected solid salts was extracted with 14 mM of CHCl₃ solution of **1d**. After phase separation a sample of organic phase was diluted with ethyl acetate and methanol (1:9:2 v:v:v, chloroform, ethyl acetate, methanol) and the content of extracted sodium cation was determined *via* atomic absorption spectroscopy. A calibration curve was generated using a standard solution of sodium hexafluorophosphate in chloroform/ ethyl acetate/methanol (1:9:2 v:v:v). The results are summarized in Table below.

Calibration curve generated by measuring the peak intensities produced by NaPF₆ standard solutions.

Summary of extraction data	•
----------------------------	---

1d	1.5M NaNO ₂	NaNO ₂	NaBr	NaNO ₃	NaCl
Extraction efficiency [%]	3.1	47.2	30.1	40.5	26.3

Membrane transport procedure.

Membrane transport experiments were performed with magnetic stirring in a conventional Utube glass cell at room temperature. The feed phase was a 2 ml of 1M NaNO₂ salt; the membrane phase consisted of $3.9 \cdot 10^{-2}$ M solution (3 ml) of **1d** in chloroform and the receiving phase consisted of 2 ml of distilled water. The salt concentration was determined by conductivity at appropriate intervals.

Calibration curve generated by measuring the conductivity produced by NaNO₂ standard solutions.

Concentration of sodium nitrite in receiving phase in funtion of time.

¹ Maeda, H. Furuyoshi, S. Nakatsuji, Y. Okahara, M. Bull. Chem. Soc. Jpn., 1983, 56, 212-218.

² a) Romański, J.; Trzaskowski, B.; Piątek, P. *Dalton Trans.* **2013**, *42*, 15271-15274; b) Romański, J. Piątek, P. *Chem. Commun.* **2012**, *48*, 11346-11348.