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1. *H and **C NMR Spectra
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Figure S1. 'H NMR spectrum of (NBuy),[C,0,] in CDsCN
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Figure S2. *C NMR spectrum of (NBuy),[C,04] in CD;CN
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Figure S3. 'H NMR spectrum of 1 in CD,Cl,. The spectrum was collected on the +100 to -100 ppm
window; only the area that contains resonances is shown.
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Figure S4. '"H NMR spectrum of 2 in CD,Cl,. The spectrum was collected on the +100 to -100 ppm
window; only the area that contains resonances is shown. Peaks marked by an asterisk are assigned to
solvents (toluene, THF)



2. Mass Spectrometry
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Figure S5. ESI-MS of 1. The peak corresponding to (1 — Br)* is shown (below), along with the theoretical
prediction of the isotopic distribution (top)
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Figure S6. ESI-MS of 3. The peak corresponding to [3 — 2Br]** is shown (below), along with the
theoretical prediction of the isotopic distribution (top)



Jeff Beattie JWB-01-171 in AcN Cone(V) 20 25-Oct-2013
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Figure S7. ESI-MS of Ni,(L)Br,+ Formate.



Jeff Beattie JWB 01-168 ACN Cone(V)20 18-Oct-2013
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Figure S8. ESI-MS of Niy(L)Br,+ Acetate
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Figure S9. ESI-MS of Ni,(L)Br,+ Malonate
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Jeff Beattie succinate Cone 20 in ACN 08-Nov-2013
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Figure S10. ESI-MS of Ni,(L)Br,+ Succinate
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Jeff Beattie glutatrate Cone 20 in ACN 08-Nov-2013
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Figure S11. ESI-MS of Niy(L)Br4+ Glutarate

12



Jeff Beattie JWB-01-171 in AcN Cone(V) 20

zQ
JWB01-171 827 (15.299) Cm (823:833-58:153x2.000)
2431
100
2421
565.7
563.7
2435
R
4619
462.8
567.0
244.7
1004.0
90.6 2284 4638  seg4
oLl 1864 3103 4286 6083 7200 g3 887.4 19019 | 40072 13274

100 ; 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Figure S12. ESI-MS of Ni,(L)Br,+ Formate and Oxalate
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Jeff Beattie JWB 01-168 ACN Cone(V)20 18-Oct-2013
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Figure S13. ESI-MS of Ni,(L)Br,+ Acetate and Oxalate
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Jeff Beattie LNi2Malonate + oxalate in ACN cone20 30-Oct-2013
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Figure S14. ESI-MS of Ni,(L)Br,+ Malonate and Oxalate
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Jeff Beattie succinate in MeOH Cone (V) 35 06-Nov-2013
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Figure S15. ESI-MS of Niy(L)Br4+ Succinate and Oxalate
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Jeff Beattie LNi2Malonate + oxalate in ACN cone20 30-Oct-2013
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Figure S16. ESI-MS of Ni,(L)Br,+ Glutarate and Oxalate
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3. X-ray crystallographic details

Structures of compounds 1, 2, 3, 4, and 1<CaBr,(THF), were confirmed by X-ray structure
determination. The crystals were mounted on a Bruker APEXII/Kappa three circle goniometer platform
diffractometer equipped with an APEX-2 detector. A graphic monochromator was employed for
wavelength selection of the Mo Ka radiation (A = 0.71073 A). The data were processed and refined using
the APEX2 software. Structures were solved by direct methods in SHELXS and refined by standard
difference Fourier techniques in the SHELXTL program suite (6.10 v., Sheldrick G. M., and Siemens
Industrial Automation, 2000). Hydrogen atoms were placed in calculated positions using the standard
riding model and refined isotropically; all other atoms were refined anisotropically. Some of the para-'Pr
groups displayed large wagging motion which in selected cases (1) was successfully modeled as two
different conformations. In contrast, we had only limited success in modelling the disorder of the para-'Pr
groups in the structures of 2 and 3. Even though these structures were collected at 100K the thermal
parameters for some of these groups were very high. The conclusion is that these groups are not well
defined and thus some were refined isotropically. The isotropic refinement of these atoms does not
significantly alter the R-factor, and does not alter the conclusions of this paper in any way. Structures of 3
and 4 contained one molecule of ether solvent, and one molecule of acetonitrile in the asymmetric unit.
Structure of 1<CaBr,(THF), contained one molecule of ether solvent in the asymmetric unit. The
acetonitrile ligands in the structures of 2 and 3 were disordered over two positions. In addition, the
structure of 2 contained acetonitrile solvent disordered over two positions in the asymmetric unit.
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Table S1. Crystal and structure refinement data.

1 2 3 4 1+CaBr,(THF),

formula CosHeBroNoNi CogH3zsBr,CuNs Cs7HegN7BroNi;  CiogHi24BriNg  Car7Hs7BraN,O3Ca
O, Cu,Oq Ni

Fw, g/mol 573.01 676.98 1208.42 2262.03 916.36
temperature 100(2) K 100(2) K 100(2) K 100(2) K 100(2) K
cryst syst monoclinic triclinic triclinic triclinic triclinic
space group P2,/c P-1 P-1 P-1 P-1
colour pink green green green red
4 4 2 2 2 2
a A 15.3126(2) 9.1051(5) 11.712(2) 12.8703(6) 8.8371(5)
b, A 9.0515(1) 9.2898(5) 15.739(2)) 17.2304(8) 10.2867(5)
¢, A 18.877(2) 18.974(1) 17.852(2) 25.5224(1) 23.517(1)
a, deg 90.00 98.136(3) 112.722(6) 108.311(2) 97.730(3)
B, deg 106.357(5) 99.496(3) 93.496(6) 102.265(2) 93.580(3)
v, deg 90.00 103.440(3) 95.234(6) 91.872(2) 110.826(2)
v, A® 2510.5(5) 1512.24(14) 3006.1(7) 5220.4(4) 1965.88(2)
deatcd, g/cm3 1.516 1.487 1.335 1.439 1.548
L, mm’™ 3.969 3.390 2.005 2.394 3.709
20, deg 50.48 50.48 50.48 50.48 50.48
R,* (all data) 0.0576 0.0615 0.0711 0.0528 0.0775
wR," (all data) 0.1077 0.1140 0.1418 0.0712 0.1221
R [(I>20)] 0.0404 0.0483 0.0480 0.0329 0.0494
WR,’ [(I>26)] | 0.0996 0.1090 0.1247 0.0663 0.1105
GOF (F%) 1.093 1.371 1.061 1.051 1.017

AR1 = 3||Fo — |Fell/ZIFo|. ® WR2 = (Z(W(Fo” — FAAE(W(FA)H)) M. € GOF = (= w(Fo* — F2)%(n —
p))¥2 where n is the number of data and p is the number of parameters refined.
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3. UV-vis Spectroscopy
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Figure S17. UV-vis spectrum of 1 (3.5 x 10° M in THF). The spectrum was collected in the range 1000 —
450 nm.
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Figure S18. UV-vis spectrum of 2 (3.5 x 10° M in CH,CN). The spectrum was collected in the range

1000 — 450 nm.
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Figure S18. UV-vis spectra of the titration of 1 with (NBu,),[C,O4 To a 3 mL solution of 1 (20 mg)
inTHF 0.1 mL fractions of (NBu4)2[C204] (10 mg) in 1 mL of CH3CN were added until a
stoichiometric amount was reached.
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Figure S20. UV-vis spectrum of 2 (1.7 x 10° M in CH;CN). The spectrum was collected in the range

1000 — 450 nm.
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Figure S21. UV-vis spectrum of 4 (1.7 x 10° M in CH;CN). The spectrum was collected in the range

1000 — 450 nm.
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Figure S22. UV-vis spectrum of the product of the reaction between 1 and formate. The reaction was
carried out by treating 1.5 mL of a 9.2 mM CH;CN solution of 1.5 mL of a 9.2 mM CH;CN solution of
formate. The spectrum was collected in the range 1000 — 450 nm.
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Figure S23. UV-vis spectrum of the product of the reaction between 1 and acetate. The reaction was
carried out by treating 1.5 mL of a 9.2 mM CH3CN solution of 1.5 mL of a 9.2 mM CH;CN solution of
formate. The spectrum was collected in the range 1000 — 450 nm.
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Figure S24. UV-vis spectrum of the product of the reaction between 1 and malonate. The reaction was
carried out by treating 1.5 mL of a 9.2 mM CH3CN solution of 1.5 mL of a 9.2 mM CH;CN solution of
malonate. The spectrum was collected in the range 1000 — 450 nm.
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Figure S25. UV-vis spectrum of the product of the reaction between 1 and succinate. The reaction was
carried out by treating 1.5 mL of a 9.2 mM CH3CN solution of 1.5 mL of a 9.2 mM CH;CN solution of
malonate. The spectrum was collected in the range 1000 — 450 nm.
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Figure S26. UV-vis spectrum of the product of the reaction between 1 and glutarate. The reaction was
carried out by treating 1.5 mL of a 9.2 mM CH;CN solution of 1.5 mL of a 9.2 mM CH;CN solution of
malonate. The spectrum was collected in the range 1000 — 450 nm.
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5. Determination of Binding Constant

The stoichiometry of oxalate binding to the metal complex is 1:1 based on the mass
spectrometry, X-ray crystallography, and elemental analyses. The binding constant for 1:1

binding between the donor and acceptor is determined using the equation below. *

The terms in the equation are defined below:

AA = observed change in absorption of metal complex after it is binds the ligand (oxalate)

Esue = change in molar absorptivity of the metal complex with and without ligand (in our case,
the difference between 1 and 3).

[M] = Concentration of the metal complex (1, mM)

[L] = Concentration of the ligand (oxalate, mM)

K = binding constant

The method of UV/vis titrations has been used to determine the binding constant, K. In
this method the concentration of the metal complex (1) was held constant (at 3.09 mM). Eight
different samples were prepared with varying concentrations of the ligand (oxalate). The
concentrations of the ligand used are listed in Table S2. The values of AAgsq are also shown in

Table S2.
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Table S2. The UV/Vis data used to plot binding isotherms for the metal complex (1) and the

ligand (oxalate). Concentration of metal complex was kept constant at 3.09 mM for all the

samples.
Sample | [Oxalate] -AAobsd
(mM)

1 0 0

2 0.3097 0.037
3 0.6194 0.055
4 0.9291 0.105
5 1.2388 0.123
6 1.5485 0.163
7 1.8582 0.182
8 2.1679 0.191

Generally, stronger absorption is observed for the product, resulting in the positive AA
values. In the present case, stronger absorption was observed for the starting material (1) versus
the product (3). To account for this phenomenon, the equation was modified by multiplying by (-
1) on both sides. The (AAobsd) values were plotted against the concentration of the ligand to
obtain series of data points. These points were fitted into a non-linear curve using the method of
non-linear least squares and by writing a custom program using Igor software. This data analysis

determined the binding constant K to be 5.2(5) * 10> M
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Figure S27: The binding isotherms for Metal/Ligand mixtures.
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