Electronic Supplementary Information

Important Role of Mo-Mo Quintuple Bond in Catalytic Synthesis of Benzene from Alkyne. A Theoretical Study

Yue Chen and Shigeyoshi Sakaki*

Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4,

Sakyo-ku,

Kyoto 606-8103, Japan

Fragment MO (FMO) Analysis	S2
Figure S1. The DFT-optimized geometries of 1 and 1 ^m .	
Figure S2. The occupation numbers of natural orbitals of 1 ^m	
Figure S3. Electron population changes of fragment's orbitals.	
Figure S4. The DFT-optimized geometries of intermediates and transition states.	S7
Figure S5. The π and π^* orbitals of 3 and disilabenzene.	S8

Fragment MO (FMO) Analysis

In general, the MO of complex AB can be represented by a linear combination of MOs of fragments A and B,¹⁻³ as eq. (1),

$$\varphi_i^{AB} = \mathbb{Z} \quad C_{im}^A \varphi_m^A + \mathbb{Z} \quad C_{in}^B \varphi_n^B \tag{1}$$

where φ_{i}^{AB} represents the ith MO of the complex AB and φ_{m}^{A} and φ_{n}^{B} are the mth and the nth MOs of fragments A and B, respectively. C_{im}^{A} and C_{in}^{B} are expansion coefficients of φ_{m}^{A} and φ_{n}^{B} , respectively, and the electron populations of φ_{m}^{A} and φ_{n}^{B} can be obtained from these coefficients.

- 1. Baba, H.; Suzuki, S.; Takemura, T., J. Chem. Phys. 1969, **50**, 2078-2086.
- 2. Fujimoto, H.; Kato, S.; Yamabe, S.; Fukui, K., J. Chem. Phys. 1974, 60, 572-578.
- 3. Dapprich, S.; Frenking, G., J. Phys. Chem. 1995, 99, 9352-9362.

1^m

Figure S1. The DFT-optimized geometries of 1 and 1^m .

Unit of bond length is Å; the bold text is experimental value.

Figure S2. The occupation numbers of natural orbitals of 1^m.

Figure S3. Electron population changes of fragment's orbitals.

TS4c

INT4c

Figure S4. The DFT-optimized geometries of intermediates and transition states.

 π_6

 π_4

 π_5

Figure S5. The π and π^* orbitals of disilabenzene.