Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Figure S1: DTA and TG of the as-prepared samples prepared at 150°C for (a) 2h, (b) 5h, (c) 12h and (d) 24h.

Figure S2: Higher magnification images of TEM.

Figure S3: Selected area electron diffraction pattern (SAED) of Co_3O_4 prepared hydrothermally at times (a) 2h (b) 5h (c) 12 h and (d) 24 h.

Fig. S4: FESEM images of (a) as-prepared sample synthesized at 150°C/8h, and (b) the corresponding calcined (300°C) sample

Fig. S5: XRD pattern of (a) as prepared sample synthesized at 150°C/8h, and (b) the corresponding calcined (300°C) sample

Fig. S6: FTIR of as-prepared sample synthesized at 150°C/8h, and (b) the corresponding calcined (300°C) sample

Figure S7: Successive UV-vis absorption spectra with time for the degradation of Chicago sky blue 6B dye at 25 °C using hydrogen peroxide in absence (blank) or in presence of catalyst by Co_3O_4 hydrothermally at 150°C for times (a) 2h (b) 5h (c) 12 h and (d) 24 h.

Figure S8: Rate constant vs. surface area plot for the degradation of Chicago sky blue 6B dye using hydrogen peroxide in presence of catalyst Co_3O_4

Synthesis	$\mathbf{S}_{\mathrm{BET}}$	S _{External}	S _{Micropore}	V _{p-Total}	V _{p-Micropore}	Pore
Time (h) at	$(m^2g^{-1})^a$	$(m^2g^{-1})^b$	$(m^2g^{-1})^c$	$(cm^3g^{-1})^d$	$(\mathrm{cm}^3\mathrm{g}^{-1})^{\mathrm{e}}$	diameter
150°C						(nm) ^f
2	56	56	0	0.46	0	10.1
5	112	112	0	0.50	0	7.4
12	207	165	42	0.30	0.02	3.5
24	233	141	92	0.24	0.04	3.3

Table S1: The textural properties of Co_3O_4 particles calcined at 300°C

^aBET surface area; ^bExternal surface area; ^cMicropore surface area; ^dTotal pore volume; ^eMicropore volume; ^fPore diameter by BJH desorption.

Scheme S1: Mechanism for the degradation of Chicago Sky Blue 6B via decomposition of H_2O_2 in the presence of Co_3O_4 catalyst.

(i)
$$H_2O_2 + Catalyst-Co^{3+} \rightarrow Catalyst-Co^{2+} + H^+ + HO_2^{\bullet}$$

(ii) $H_2O_2 + Catalyst-Co^{2+} \rightarrow Catalyst-Co^{3+} + \bullet OH + HO^{\bullet}$
(iii) $\bullet OH + Catalyst-Co^{2+} \rightarrow Catalyst-Co^{3+} + HO^{\bullet}$
(iv) Catalyst-Co³⁺ + HO₂ $\bullet \rightarrow Catalyst-Co^{2+} + H^+ + O_2$
(v) Catalyst-Co²⁺ + HO₂ $\bullet \rightarrow Catalyst-Co^{3+} + HO_2^{\bullet}$
(vi) $H_2O_2 + \bullet OH \rightarrow H_2O + HO_2^{\bullet}$

- (vii) $H_2O_2 + HO_2 \bullet \rightarrow H_2O + O_2 + \bullet OH$
- (viii) •OH + CSB (Dye) \rightarrow Degradation of CSB (colourless)