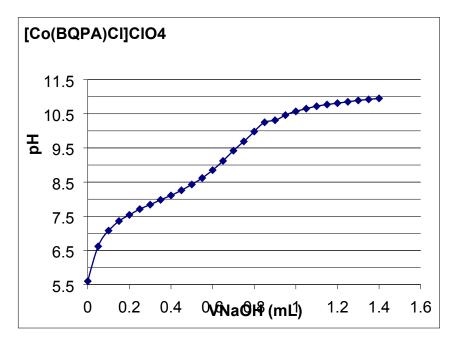
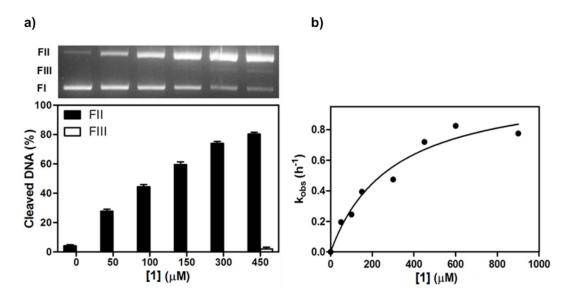
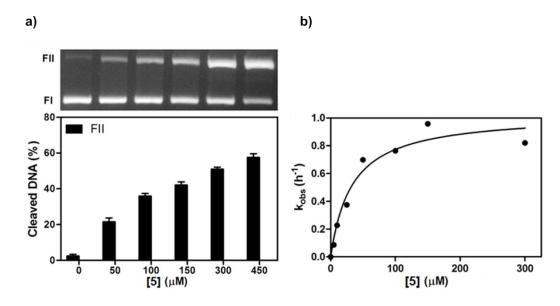
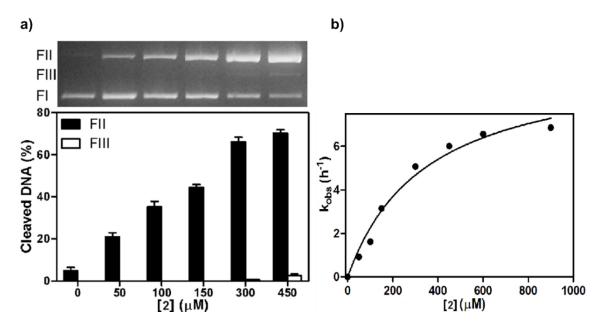
ELECTRONIC SUPPLEMENTARY MATERIALS

Efficient hydrolytic cleavage of plasmid DNA by chlorocobalt(II) complexes based on sterically hindered pyridyl tripod tetraamine ligands: synthesis, crystal structure and DNA cleavage activity[†]

Salah S. Massoud,^{*a} Richard S. Perkins,^a Febee R. Louka,^a Wu Xu,^a Anne Le Roux,^a Quentin Dutercq,^a Roland C. Fischer,^b Franz A. Mautner,^c Makoto Handa,^d Yuya Hiraoka,^d Gabriel L. Kreft, ^e Tiago Bortolotto, ^e Hernán Terenzi,^{*e}


Fig. S1. Potentiometric pH titration of $[Co(BQPA)(H_2O)]^{2+}$ (4.0 x 10⁻³M) with standard 0.05 M NaOH at 37 °C.

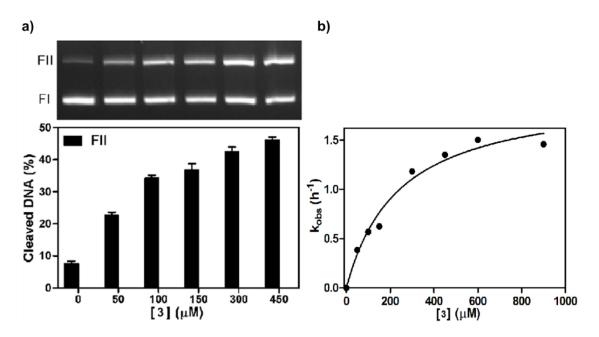

Fig. S2. (a) Agarose gel electrophoresis pattern and the corresponding plots for the cleavage of pBSK II plasmid DNA (~ 25 μ M) by complex 1 at different complex concentrations (50-450 μ M) at pH 7.0 Tris-HCl buffer (10 mM) and 37 °C; t = 2 h. Results are expressed as mean standard deviation (n = 3). (b) *Pseudo* Michaelis-Menten kinetics of the cleavage of pBSK II plasmid DNA (~ 25 μ M), [1] = 50-900 μ M, pH 7.0 Tris-HCl buffer (10 mM) and 37 °C.

Fig. S3. (a) Agarose gel electrophoresis pattern and the corresponding plots for the cleavage of pBSK II plasmid DNA (~ 25 μ M) by complex **5** at different complex concentrations (50-450 μ M) at pH 7.0 Tris-HCl buffer (10 mM) and 37 °C; t = 2 h. Results are expressed as mean standard deviation (n = 3). (b) *Pseudo* Michaelis-Menten kinetics of the cleavage of pBSK II plasmid DNA (~ 25 μ M), [**5**] = 5-300 μ M, pH 7.0 Tris-HCl buffer (10 mM) and 37 °C.

Fig. S4. (a) Agarose gel electrophoresis pattern and the corresponding plots for the cleavage of pBSK II plasmid DNA (~ 25 μ M) by complex **2** at different complex concentrations (50-450 μ M) at pH 9.0 Tris-HCl buffer (10 mM) and 37 °C; t = 15 min. Results are expressed as mean standard deviation (n = 3). (b) *Pseudo* Michaelis-Menten kinetics of the cleavage of pBSK II plasmid DNA (~ 25 μ M), [**2**] = 50-900 μ M, pH 9.0 Tris-HCl buffer (10 mM) and 37 °C.

Fig. S5. (a) Agarose gel electrophoresis pattern and the corresponding plots for the cleavage of pBSK II plasmid DNA (~ 25 μ M) by complex **3** at different complex concentrations (50-450 μ M) at pH 9.0 Tris-HCl buffer (10 mM) and 37 °C; time = 30 min. Results are expressed as mean standard deviation (n = 3). (b) *Pseudo* Michaelis-Menten kinetics of the cleavage of pBSK II plasmid DNA (~ 25 μ M), [**2**] = 50-900 μ M, pH 9.0 Tris-HCl buffer (10 mM) and 37 °C.

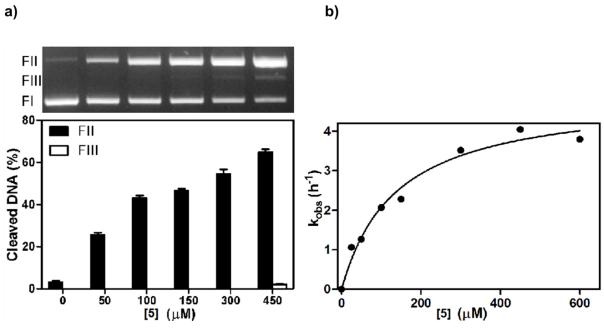
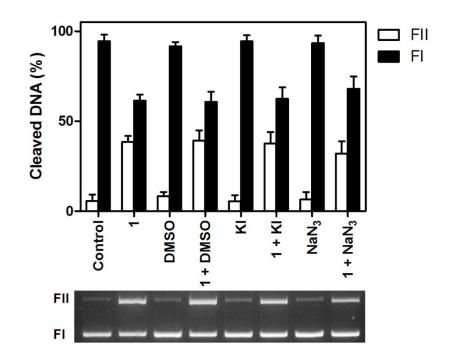
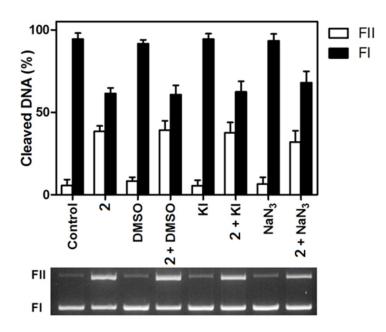
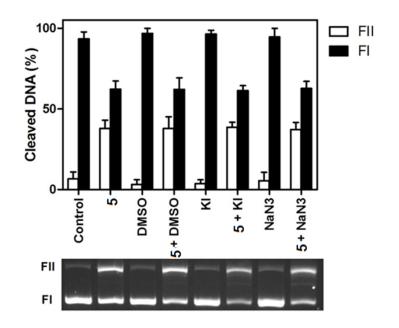
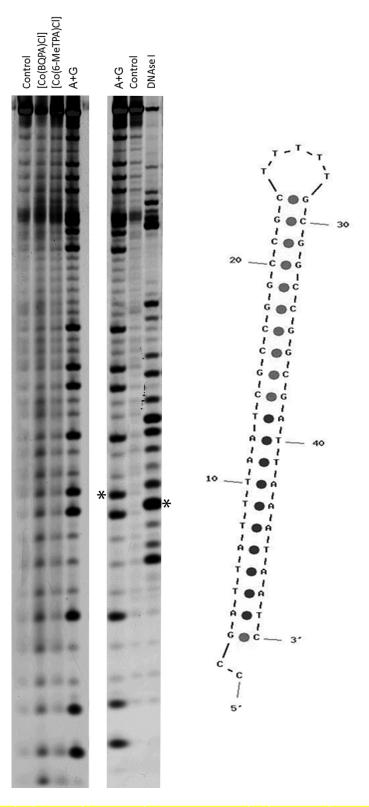
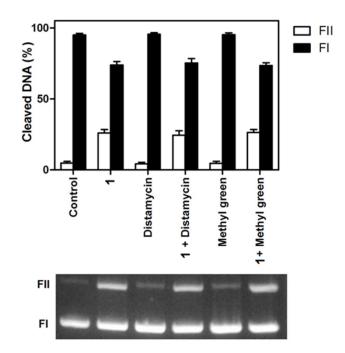
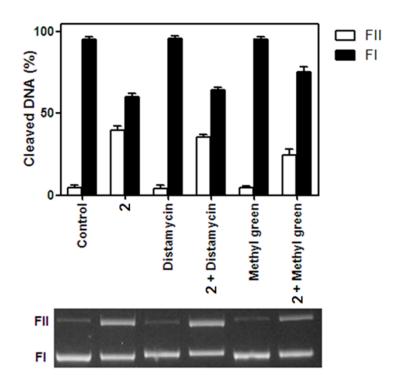


Fig. S6. (a) Agarose gel electrophoresis pattern and the corresponding plots for the cleavage of pBSK II plasmid DNA (~ 25 μ M) by complex 5 at different complex concentrations (50-450 μ M) at pH 9.0 Tris-HCl buffer (10 mM) and 37 °C; time = 30 min. Results are expressed as mean standard deviation (n = 3). (b) *Pseudo* Michaelis-Menten kinetics of the cleavage of pBSK II plasmid DNA (~ 25 μ M), [5] = 50-600 μ M, pH 9.0 Tris-HCl buffer (10 mM) and 37 °C.


Fig. S7. Cleavage of pBSK II plasmid DNA ([DNA] = $\sim 25 \ \mu$ M) by 1 ([1] = 450 μ M) in the presence and absence of ROS scavengers. Reaction Conditions: [Buffer] = 10 mM Tris-HCl pH 7.0, 37 °C, t = 30 min., [DMSO] = 0.5 M, [KI] = 0.4 mM, [NaN₃] = 0.5 mM. Results are expressed as mean ± standard deviation (n = 3).


Fig. S8. Cleavage of pBSK II plasmid DNA (~25 μ M) by **2** (450 μ M) in the presence and absence of ROS scavengers. Reaction Conditions: [Buffer] = 10 mM Tris-HCl pH 7.0, 37 °C, t = 30 min, [DMSO] = 0.5 M, [KI] = 0.4 mM, [NaN₃] = 0.5 mM. Results are expressed as mean ± standard deviation (n = 3).


Fig. S9. Cleavage of pBSK II plasmid DNA (~25 μ M) by **5** (450 μ M) in the presence and absence of ROS scavengers. Reaction Conditions: [Buffer] = 10 mM Tris-HCl pH 7.0, 37 °C, t = 30 min, [DMSO] = 0.5 M, [KI] = 0.4 mM, [NaN₃] = 0.5 mM. Results are expressed as mean ± standard deviation (n = 3).

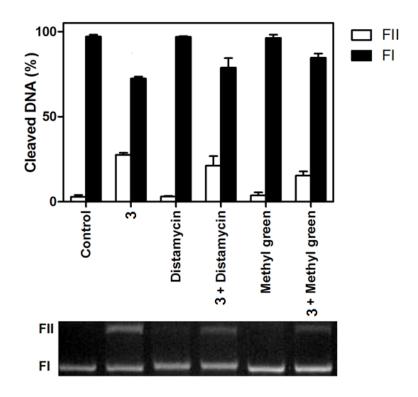

Fig. S10. Cleavage of Oligo1 (49-mer) oligonucleotide by complex ions $[Co(6-MeTPA)CI]^+$ and $[Co(BPQA)CI]^+$. Lanes labeled as Control, A+G and DNAse I represent a sample without treatment, the Maxam-Gilbert Guanine + Adenine ladder and a sample partially digested by DNAse I. Note the asterisk (*) at cleavage product with terminal Adenine 12: the fragment of G+A ladder (3'-phosphate termini) migrates slower than the corresponding in the DNAse I digestion (3'-OH) due to the termini composition.

Fig. S11. Cleavage of pBSK II plasmid DNA (~25 μ M) by **1** (450 μ M) in the presence of DNA groove binders distamycin and methyl green (MG) [Distamycin or MG] = 50 μ M). Reaction Conditions: [Buffer] = 10 mM Tris-HCl pH 7.0, 37 °C, t = 30 min. Results are expressed as mean ± standard deviation (n = 3).

Fig. S12. Cleavage of pBSK II plasmid DNA (~25 μ M) by **2** (450 μ M) in the presence of DNA groove binders distamycin and methyl green (MG) [Distamycin or MG] = 50 μ M). Reaction Conditions: [Buffer] = 10 mM Tris-HCl pH 7.0, 37 °C, t = 30 min. Results are expressed as mean ± standard deviation (n = 3).

Fig. S13. Cleavage of pBSK II plasmid DNA (~25 μ M) by **3** (450 μ M) in the presence of DNA groove binders distamycin and methyl green (MG) [Distamycin or MG] = 50 μ M). Reaction Conditions: [Buffer] = 10 mM Tris-HCl pH 7.0, 37 °C, t = 30 min. Results are expressed as mean ± standard deviation (n = 3).

Table S1. *Pseudo*-Michael-Menten Kinetics of pBSK II Plasmid DNA Cleavage by Chlorocobalt(II) Complexes 1-5 at Different Complex Concentrations, [DNA] $\approx 25 \ \mu$ M, [buffer] = 10 mM Tris-HCl pH 9.0 and 37 °C.

Complex	[Co(II)] (µM)	k_{obs} (h ⁻¹)	k_{cat} (h ⁻¹) ^{a)}	$K_{M}(M)$
$[Co(TPA)Cl]ClO_4$ (1)	5	0.232	3.02	3.64 x 10 ⁻⁵
	10	0.732		
	15	0.810		
	30	1.41		
	50	1.78		
	100	2.17		
	150	2.43		
$[Co(6-MeTPA)Cl]ClO_4$ (2)	50	0.924	10.1	3.47 x 10 ⁻⁴
	100	1.62		
	150	3.15		
	300	5.08		
	450	6.02		
	600	6.56		
	900	6.86		
$[Co(6-Me_2TPA)Cl]ClO_4 (3)$	50	0.385	1.99	2.40 x 10 ⁻⁴
	100	0.569		
	150	0.624		
	300	1.18		
	450	1.35		
	600	1.50		
	900	1.46		
$[Co(BPQA)C1]ClO_4$ (4)	50	2.61	16.8	3.65 x 10 ⁻⁴
	100	3.89		
	150	5.09		
	300	6.66		
	450	9.72		
	600	10.2		
	900	12.3		
[Co(BQPA)Cl]ClO ₄ (5)	25	1.06	4.92	1.37 x 10 ⁻⁴
	50	1.27		
	100	2.07		
	150	2.28		
	300	3.52		
	450	4.04		
	600	3.79		

a) k_{cat} represents the maximum rate of cleavage at the saturation ($V_{max} = k_{cat}$)