1

Supplementary file

Yttrium and lanthanide complexes of β -dialdehydes: synthesis, characterization, luminescence and electrochemistry of coordination compounds with the conjugate base of bromomalonaldehyde

Characterization data for the complexes

Characterization of **6**^Y

C₃₆H₂₈AsBr₄O₈Y: calcd. C 40.3, H 2.63, Br 29.8; found C 40.5, H 2.65, Br 30.0. $\Lambda_{M}(H_{2}O)$: 63 Ω⁻¹ mol⁻¹ cm². IR (KBr): v_{CO} = 1588-1561 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 274. ¹H NMR ((CD₃)₂SO, 298 K, δ): 8.56 (s, 8H, *BrMA-H*); 8.00-7.55 (m, 20H, *AsPh*₄).

Characterization of 6^{Eu}

C₃₆H₂₈AsBr₄O₈Eu: calcd. C 38.1, H 2.49, Br 28.2; found C 38.3, H 2.50, Br 28.4. Λ_M(H₂O): 64 Ω⁻¹ mol⁻¹ cm². IR (KBr): v_{CO} = 1587-1560 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 277. ¹H NMR (D₂O, 298 K, δ): 8.26 (s, 8H, *BrMA-H*); 7.80-7.45 (m, 20H, *AsPh*₄). PL (solid sample, λ_{exc} = 320 nm, 298 K, nm): 586, 592 (⁵D₀→⁷F₁); 611, 621 (⁵D₀→⁷F₂); 650, 657 (⁵D₀→⁷F₃); 692, 702 (⁵D₀→⁷F₄); 400-750 (*ligand emission*). Emission decay time (solid sample, 298 K): τ₁ = 0.383 ms (λ_{exc} = 320 nm, λ_{em} = 613 nm). Q_i = 9 %. τ₂ = 58 μs.

Characterization of 6^{Tb}

C₃₆H₂₈AsBr₄O₈Tb: calcd. C 37.9, H 2.47, Br 28.0; found C 38.0, H 2.50, Br 27.9. Λ_M(H₂O): 59 Ω⁻¹ mol⁻¹ cm². IR (KBr): v_{CO} = 1587-1559 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 276. ¹H NMR (D₂O, 298 K, δ): 9.67 (s, slightly br, 8H, *BrMA-H*); 7.85-7.30 (m, 20H, *AsPh*₄). ¹H NMR (D₂O, 333 K, δ): 11.29 (s, slightly br, 8H, *BrMA-H*); 8.45-7.45 (m, 20H, *AsPh*₄). PL (solid sample, λ_{exc} = 320 nm, 298 K, nm): 488, 493 (⁵D₄→⁷F₆); 542, 548 (⁵D₀→⁷F₅); 582, 592 (⁵D₀→⁷F₄); 617, 621 (⁵D₀→⁷F₃); 400-750 (*ligand emission*). Emission decay time (solid sample, 298 K): τ₁ = 97 μs (λ_{exc} = 377 nm, λ_{em} = 544 nm). τ₂ = 58 μs.

C₁₉H₁₄Br₃N₂O₈Y: calcd. C 31.4, H 1.94, N 3.85, Br 33.0; found C 31.5, H 2.00, N 3.85. IR (KBr): $v_{CO} = 1547 \text{ cm}^{-1}$. UV-VIS (H₂O, 298 K, nm, max): 276. ¹H NMR ((CD₃)₂SO, 298 K, δ): 8.66 (s, 6H, *BrMA-H*); 8.43 (d, 2H, ³J_{HH} = 5.9 Hz, *bipyO*₂-H₆-H₆'); 7.83-7.52 (m, 6H, *bipyO*₂-H₃-H₃'-H₄-H₄'-H₅-H₅').

Characterization of 7^{Eu}

C₁₉H₁₄Br₃N₂O₈Eu: calcd. C 28.9, H 1.79, N 3.55, Br 30.3; found C 29.1, H 1.80, N 3.55, Br 30.4. IR (KBr): v_{CO} = 1549 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 275. ¹H NMR ((CD₃)₂SO, 298 K, δ): 8.29 (d, 2H, ³J_{HH} = 6.4 Hz, *bipyO*₂-*H*₆-*H*₆'); 7.75 (t, 2H, ³J_{HH} = 7.9 Hz, *bipyO*₂-*H*₄-*H*₄'); 7.60-7.40 (m, 4H, *bipyO*₂-*H*₃-*H*₃'-*H*₅-*H*₅'); 4.77 (s, br, 6H, *BrMA*-*H*). ¹H NMR ((CD₃)₂SO, 314 K, δ): 8.32 (d, 2H, ³J_{HH} = 6.4 Hz, *bipyO*₂-*H*₆-*H*₆'); 7.70 (t, 2H, ³J_{HH} = 7.9 Hz, *bipyO*₂-*H*₄-*H*₄'); 7.60-7.40 (m, 4H, *bipyO*₂-*H*₃-*H*₅'); 5.15 (s, br, 6H, *BrMA*-*H*). PL (solid sample, λ_{exc} = 320 nm, 298 K, nm): 584, 591 (⁵D₀→⁷F₁); 611, 616 (⁵D₀→⁷F₂); 649, 653 (⁵D₀→⁷F₃); 690, 699 (⁵D₀→⁷F₄). PLE (solid sample, λ_{em} = 611 nm, 298 K, nm): 325 (*ligand excitation*); 393, 415, 438, 464 (*Eu*³⁺ *excitation*). Emission decay time (solid sample, 298 K): τ = 0.096 ms (λ_{exc} = 320 nm, λ_{em} = 613 nm). Q_i = 5%.

Characterization of 7^{Tb}

C₁₉H₁₄Br₃N₂O₈Tb: calcd. C 28.6, H 1.77, N 3.52, Br 30.1; found C 28.7, H.1.80, N 3.55, Br 30.1. IR (KBr): v_{CO} = 1549 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 277. ¹H NMR ((CD₃)₂SO, 298 K, δ): 53.0 (s, very br, 6H, *BrMA-H*); 17.0 (s, br, 2H, *bipyO*₂-*H*₆-*H*₆'); 7.88, 7.44, 7.34 (3s, slightly br, 6H, *bipyO*₂-*H*₃-*H*₃'- *H*₄-*H*₄'-*H*₅-*H*₅'). ¹H NMR ((CD₃)₂SO, 314 K, δ): 48.2 (s, very br, 6H, *BrMA-H*); 14.9 (s, br, 2H, *bipyO*₂-*H*₆-*H*₆'); 8.00, 7.69, 7.52 (3s, slightly br, 6H, *bipyO*₂-*H*₃-*H*₃'- *H*₄-*H*₄'-*H*₅-*H*₅'). PL (solid sample, λ_{exc} = 286 nm, 298 K, nm): 488, 494 (⁵D₄→⁷F₆); 544, 547 (⁵D₄→⁷F₅); 581, 588 (⁵D₄→⁷F₄); 617, 621 (⁵D₄→⁷F₃). Emission decay time (solid sample, 298 K): τ = 18 μs (λ_{exc} = 320 nm, λ_{em} = 544 nm).

Characterization of 8⁴

 $C_{21}H_{14}Br_{3}N_{2}O_{6}Y$: calcd. C 35.1, H 1.96, N 3.90, Br 33.3; found C 35.3, H 2.00, N 3.90, Br 33.5. IR (KBr): $v_{CO} = 1541 \text{ cm}^{-1}$. UV-VIS (H₂O, 298 K, nm, max): 264. ¹H NMR ((CD₃)₂SO, 306 K, δ): 9.13 (dd, 2H, ³J_{HH} = 4.5 Hz, ⁴J_{HH} = 1.8 Hz, *phen-H*₂-H₉); 8.66 (s, 6H, *BrMA-H*); 8.52 (dd, 2H, ³J_{HH} = 8.2 Hz, ⁴J_{HH} = 1.8 Hz, *phen-H*₂-H₉); 7.79 (m, dd, 2H, ³J_{HH} = 8.2 Hz, ³J_{HH} = 4.5 Hz, *phen-H*₃-H₈).

C₂₁H₁₄Br₃N₂O₆Eu: calcd. C 32.3, H 1.80, N 3.58, Br 30.7; found C 32.5, H 1.80, N 3.60, Br 30.8. IR (KBr): v_{CO} = 1540 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 274. UV-VIS (CH₂Cl₂, 298 K, nm, max): 264. ¹H NMR ((CD₃)₂SO, 298 K, δ): 8.95 (s, very br, 2H, *phen-H₂-H₉*); 8.55 (d, 2H, ³J_{HH} = 8.0 Hz, *phen-H₄-H₇*); 8.01 (s, 2H, *phen-H₅-H₆*); 7.64 (m, slightly br, 2H, *phen-H₃-H₈*); 4.47 (s, slightly br, 6H, *BrMA-H*). ¹H NMR ((CD₃)₂SO, 324 K, δ): 8.51 (d, 2H, ³J_{HH} = 8.3 Hz, *phen-H₄-H₇*); 8.48 (s, very br, 2H, *phen-H₂-H₉*); 7.97 (s, 2H, *phen-H₅-H₆*); 7.63 (dd, 2H, ³J_{HH} = 8.3 Hz, ³J_{HH} = 4.3 Hz, *phen-H₃-H₈*); 5.01 (s, slightly br, 6H, *BrMA-H*). PL (solid sample, λ_{exc} =320 nm, 298 K, nm): 589, 593 (⁵D₀→⁷F₁); 611, 621 (⁵D₀→⁷F₂); 651 (⁵D₀→⁷F₃); 696, 700-702 (⁵D₀→⁷F₄). Emission decay time (solid sample, 298 K): τ = 0.224 ms (λ_{exc} = 320 nm, λ_{em} = 613 nm). Q_i = 12 %.

Characterization of 8^{Tb}

C₂₁H₁₄Br₃N₂O₆Tb: calcd. C 32.0, H 1.79, N 3.55, Br 30.4; found C 32.1, H 1.80, N 3.55, Br 30.5. IR (KBr): v_{C0} = 1540 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 275. UV-VIS (CH₂Cl₂, 298 K, nm, max): 268. ¹H NMR ((CD₃)₂SO, 298 K, δ): 60.7 (s, very br, 6H, *NMA-H*); 10.65-6.05 (m, very br, 8H, *phen*). ¹H NMR ((CD₃)₂SO, 328 K, δ): 52.1 (s, very br, 6H, *NMA-H*); 9.65-4.00 (m, very br, 8H, *phen*). PL (solid sample, λ_{exc} = 320 nm, 298 K, nm): 489, 495 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$); 543, 549 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$); 581, 585 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$); 617, 621 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$). Emission decay time (solid sample, 298 K): τ = 51 µs (λ_{exc} = 320 nm, λ_{em} = 544 nm).

Characterization of **9**^Y

 $C_{24}H_{17}Br_{3}N_{3}O_{6}Y$: calcd. C 37.3, H 2.22, N 5.44, Br 31.1; found C 37.4, H 2.25, N 5.45, Br 31.2. IR (KBr): $v_{CO} = 1553 \text{ cm}^{-1}$. UV-VIS (H₂O, 298 K, nm, max): 278. ¹H NMR ((CD₃)₂SO, 298 K, δ): 8.72 (d, 2H, ³J_{HH} = 4.8 Hz, *terpy-H*₆-*H*₆"); 8.70 (s, 6H, *BrMA-H*); 8.61 (d, 2H, ³J_{HH} = 8.0 Hz, *terpy-H*₃-*H*₃"); 8.44 (d, 2H, ³J_{HH} = 7.8 Hz, *terpy-H*₃'-*H*₅'); 8.09 (t, 1H, ³J_{HH} = 7.8 Hz, *terpy-H*₄'); 8.00 (td, 2H, ³J_{HH} = 7.8 Hz, ⁴J_{HH} = 1.7 Hz, *terpy-H*₄-*H*₄"); 7.48 (dd, 2H, ³J_{HH} = 8.0 Hz, ³J_{HH} = 4.8 Hz, *terpy-H*₅-*H*₅").

Characterization of 9^{Eu}

 $C_{24}H_{17}Br_3N_3O_6Eu:$ calcd. C 34.5, H 2.05, N 5.03, Br 28.7; found C 34.7, H 2.05, N 5.05, Br 28.8. IR (KBr): $v_{CO} = 1550 \text{ cm}^{-1}$. UV-VIS (H₂O, 298 K, nm, max): 278. ¹H NMR ((CD₃)₂SO, 298 K, δ): 8.72 (d, 2H, ³J_{HH} = 4.8 Hz, *terpy-H*₆-*H*₆"); 8.62 (d, 2H, ³J_{HH} = 8.0 Hz, *terpy-H*₃-*H*₃"); 8.45 (d, 2H, ³J_{HH} = 7.8 Hz, *terpy-H*₃'-*H*₅'); 8.10 (t, 1H, ³J_{HH} = 7.8 Hz, *terpy-H*₄'); 8.00 (td, 2H, ³J_{HH} = 7.8 Hz, ⁴J_{HH} = 1.7 Hz, *terpy-H*₄-

 H_4''); 7.49 (dd, 2H, ${}^{3}J_{HH} = 8.0$ Hz, ${}^{3}J_{HH} = 4.8$ Hz, $terpy-H_5-H_5''$); 4.92 (s, 6H, *BrMA-H*). *BrMA-H* signal fall at 5.33 ppm at 320 K. PL (solid sample, $\lambda_{exc} = 320$ nm, 298 K, nm): 592 (${}^{5}D_0 \rightarrow {}^{7}F_1$); 614, 618 (${}^{5}D_0 \rightarrow {}^{7}F_2$); 649 (${}^{5}D_0 \rightarrow {}^{7}F_3$); 688, 693-698 (${}^{5}D_0 \rightarrow {}^{7}F_4$). Emission decay time (solid sample, 298 K): $\tau = 0.772$ ms ($\lambda_{exc} = 320$ nm, $\lambda_{em} = 613$ nm). Q_i = 34%.

Characterization of 9[™]

C₂₄H₁₇Br₃N₃O₆Eu: calcd. C 34.2, H 2.03, N 4.99, Br 28.5; found C 34.4, H 2.05, N 5.00, Br 28.6. IR (KBr): v_{CO} = 1545 cm⁻¹. UV-VIS (H₂O, 298 K, nm, max): 278. ¹H NMR ((CD₃)₂SO, 298 K, δ): 65.7 (s, very br, 6H, *BrMA-H*); 9.05-8.72 (m, slightly br, 4H, *terpy*); 8.59 (d, 2H, ³J_{HH} = 7.4 Hz, *terpy*); 8.32-7.97 (m, 3H, *terpy*); 7.64 (m, slightly br, 2H, *terpy*). *BrMA-H* signal fall at 52.7 ppm at 333 K. PL (solid sample, λ_{exc} = 320 nm, 298 K, nm): 488, 492 (⁵D₄→⁷F₆); 542, 548 (⁵D₄→⁷F₅); 582, 589 (⁵D₄→⁷F₄); 619, 622 (⁵D₄→⁷F₃). Emission decay time (solid sample, 298 K): τ = 11 μs (λ_{exc} = 320 nm, λ_{em} = 544 nm).

Characterization data for the ionic liquids

Characterization of [P₈, 8, 8, 1][BrMA]

C₂₈H₅₆BrO₂P: calcd. C 62.8, H 10.5, Br 14.9; found C 62.9, H 10.6, Br 14.8. IR: v_{CO} = 1567 cm⁻¹. ¹H NMR (CDCl₃, 298 K, δ): 8.81 (s, 2H, *BrMA-H*); 2.23 (m, 6H, *P-CH*₂); 1.91 (d, 3H, ²J_{PH} = 13.2 Hz, *P-CH*₃); 1.47, 1.25, 0.86 (3m, 45H, *octyl*). ³¹P {¹H} NMR (CDCl₃, 298 K, δ): 32.1. PL (ionic liquid, λ_{exc} = 350 nm, 298 K, nm): 400-650, max 478. PLE (ionic liquid, λ_{em} = 480 nm, 298 K, nm): max 422. Emission decay time (ionic liquid, 298 K): τ = 1.6 ns (λ_{exc} = 373 nm, λ_{em} = 535 nm).

Characterization of Eu@[P_{8,8,8,1}][BrMA]

¹H NMR (CDCl₃, 298 K, δ): 8.68 (s, slightly br, 2H, *BrMA-H*); 2.27 (m, 6H, *P-CH*₂); 1.95 (d, 3H, ²J_{PH} = 13.2 Hz, *P-CH*₃); 1.47, 1.24, 0.85 (3m, 45H, *octyl*). ³¹P {¹H} NMR (CDCl₃, 298 K, δ): 32.0.

Characterization of Tb@[P_{8,8,8,1}][BrMA]

¹H NMR (CDCl₃, 298 K, δ): 9.04 (s, br, 2H, *BrMA-H*); 2.70-0.60 (m, 54H, *phosphonium hydrogen atoms*). ³¹P {¹H} NMR (CDCl₃, 298 K, δ): 32.0.

Characterization data for the plastic materials

Characterization of 7^{Eu}@PMMA

PL (solid sample, $\lambda_{exc} = 320 \text{ nm}$, 298 K, nm): 591 (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$); 611, 617 (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$); 650, 653 (${}^{5}D_{0} \rightarrow {}^{7}F_{3}$); 691, 700 (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$). PLE (solid sample, $\lambda_{em} = 611 \text{ nm}$, 298 K, nm): max 279 (*ligand excitation*); 393, 415, 464 (Eu^{3+} excitation). Emission decay time (solid sample, 298 K): $\tau = 0.127 \text{ ms}$ ($\lambda_{exc} = 320 \text{ nm}$, $\lambda_{em} = 613 \text{ nm}$). $Q_{i} = 5\%$.

Characterization of 7^{Tb}@PMMA

PL (solid sample, $\lambda_{exc} = 280 \text{ nm}$, 298 K, nm): 489, 494 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$); 544 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$); 581, 588 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$); 617, 621 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$). PLE (solid sample, $\lambda_{em} = 544 \text{ nm}$, 298 K, nm): max 280 (*ligand excitation*). Emission decay time (solid sample, 298 K): $\tau = 11 \text{ } \mu \text{s}$ ($\lambda_{exc} = 320 \text{ } \text{nm}$, $\lambda_{em} = 544 \text{ } \text{nm}$).

Characterization of 8^{Eu}@PMMA

PL (solid sample, $\lambda_{\text{exc}} = 320 \text{ nm}$, 298 K, nm): 579 (${}^{5}D_{0} \rightarrow {}^{7}F_{0}$); 589, 593 (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$); 611, 621 (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$); 650, 654 (${}^{5}D_{0} \rightarrow {}^{7}F_{3}$); 689, 696-700 (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$). PLE (solid sample, $\lambda_{\text{em}} = 611 \text{ nm}$, 298 K, nm): max 334 nm (*ligand excitation*); 393, 400, 464 (Eu^{3+} excitation). Emission decay time (solid sample, 298 K): $\tau = 0.254 \text{ ms} (\lambda_{\text{exc}} = 320 \text{ nm}, \lambda_{\text{em}} = 613 \text{ nm})$. Q_i = 13 %.

Characterization of 8^{Tb}@PMMA

PL (solid sample, $\lambda_{exc} = 280 \text{ nm}$, 298 K, nm): 490 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$); 542, 549 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$); 581, 585 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$); 612, 621 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$). PLE (solid sample, $\lambda_{em} = 543 \text{ nm}$, 298 K, nm): max 334 (*ligand excitation*). Emission decay time (solid sample, 298 K): $\tau = 56 \text{ } \mu \text{s}$ ($\lambda_{exc} = 320 \text{ nm}$, $\lambda_{em} = 544 \text{ nm}$).

Characterization of 9^{Eu}@PMMA

PL (solid sample, $\lambda_{\text{exc}} = 335 \text{ nm}$, 298 K, nm): 579 (${}^{5}D_{0} \rightarrow {}^{7}F_{0}$); 592 (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$); 614, 618 (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$); 650 (${}^{5}D_{0} \rightarrow {}^{7}F_{3}$); 688, 694-698 (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$). PLE (solid sample, $\lambda_{\text{em}} = 614 \text{ nm}$, 298 K, nm): max 330 (*ligand excitation*); 394, 416, 464 (Eu^{3+} excitation). Emission decay time (solid sample, 298 K): $\tau = 0.783 \text{ ms}$ ($\lambda_{\text{exc}} = 325 \text{ nm}$, $\lambda_{\text{em}} = 613 \text{ nm}$). $Q_{\text{i}} = 30 \%$.

PL (solid sample, $\lambda_{\text{exc}} = 310 \text{ nm}$, 298 K, nm): 488, 492 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$); 542, 548 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$); 582, 589 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$); 620, 622 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$). Emission decay time (solid sample, 298 K): $\tau = 12 \text{ } \mu \text{s}$ ($\lambda_{\text{exc}} = 320 \text{ } \text{nm}$, $\lambda_{\text{em}} = 544 \text{ } \text{nm}$).

Characterization of Eu-BrMA@PVP

PL (solid sample, $\lambda_{exc} = 330 \text{ nm}$, 298 K, nm): 584, 591 (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$); 614 (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$); 652 (${}^{5}D_{0} \rightarrow {}^{7}F_{3}$); 688-700 (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$). PLE (solid sample, $\lambda_{em} = 613 \text{ nm}$, 298 K, nm): $\leq 340 \text{ nm}$ (*ligand excitation*); 394, 417, 464 (Eu^{3+} excitation). Emission decay time (solid sample, 298 K): $\tau = 0.365 \text{ }\mu\text{s}$ ($\lambda_{exc} = 320 \text{ }nm$, $\lambda_{em} = 613 \text{ }nm$). Q_i = 23 %.

Characterization of Tb-BrMA@PVP

PL (solid sample, $\lambda_{\text{exc}} = 320 \text{ nm}$, 298 K, nm): 488, 492 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$); 545 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$); 582, 589 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$); 618, 621 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$). PLE (solid sample, $\lambda_{\text{em}} = 544 \text{ nm}$, 298 K, nm): $\leq 340 \text{ nm}$ (*ligand excitation*). Emission decay time (solid sample, 298 K): $\tau = 14 \text{ } \mu \text{s}$ ($\lambda_{\text{exc}} = 320 \text{ } \text{nm}$, $\lambda_{\text{em}} = 544 \text{ } \text{nm}$).