1

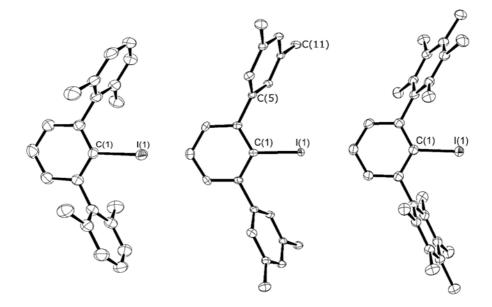
Supporting Information for:

Ligand Influences on Homoleptic Group 12 m-Terphenyl Complexes

Toby J. Blundell, Fiona R. Hastings, Benjamin M. Gridley, Graeme J. Moxey,[‡] William Lewis, Alexander J. Blake and Deborah L. Kays*

School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

‡ Current address: Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.


Contents

- Page 2: Molecular Structures of 2,6-Ar₂C₆H₃I [Ar = 2,6-Me₂C₆H₃ (2,6-Xyl); 3,5-Me₂C₆H₃ (3,5-Xyl); 2,3,4,5,6-Me₅C₆ (Pmp)].
- Page 3: Molecular Structure of $[2,6-(3,5-Xyl)_2C_6H_3Li]_2$.
- Page 4: Crystallographic Data.
- Page 5: References.

Molecular Structures of 2,6-Ar₂C₆H₃I [Ar = 2,6-Me₂C₆H₃ (2,6-Xyl); 3,5-Me₂C₆H₃ (3,5-Xyl); 2,3,4,5,6-Me₅C₆ (Pmp)]

The *m*-terphenyl iodides 2,6-Ar₂C₆H₃I (Ar = 2,6-Xyl, 3,5-Xyl, Pmp)^{S1-S3} were synthesised *via* modification of the 'one-pot' methodology reported by Hart *et al.*^{S1} Pure crystalline samples of these compounds were obtained from saturated ethanol solutions at room temperature.

The crystal structures of 2,6-Ar₂C₆H₃I, along with relevant bond lengths and angles can be found in Fig. S1.

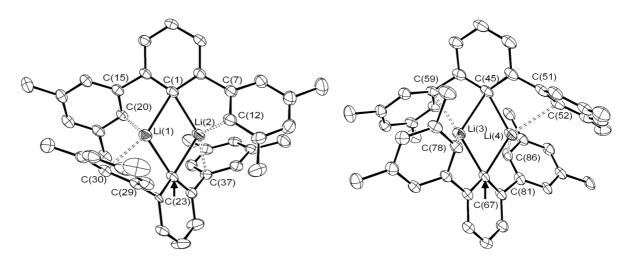


Fig. S1 Molecular structures of 2,6-Ar₂C₆H₃I (Ar = 2,6-Xyl, 3,5-Xyl, Pmp), with displacement ellipsoids set at the 50% probability level. Hydrogen atoms are omitted for clarity. Relevant bond lengths (Å) and angles (°) for 2,6-(2,6-Xyl)₂C₆H₃I: C(1)–I(1) 2.106(4), $\angle ortho$ -aryl-C₆H₃ rings 89.62(9), for 2,6-(3,5-Xyl)₂C₆H₃I: C(1)–I(1) 2.097(7), H(11A)····C(5) centroid = 2.752(2), C(11)····C(5) centroid = 3.699(6), I(1)···C(1) centroid = 3.776(3), $\angle ortho$ -aryl-C₆H₃ rings 65.7(2), $\angle C(11)$ –H(11A)····C(5) centroid = 162.48(3), $\angle C(1)$ –I(1) centroid = 121.94(18), and for 2,6-(Pmp)₂C₆H₃I: C(1)–I(1) 2.102(2), C(18) ring centroid···C(18) ring centroid = 4.3, $\angle ortho$ -aryl-C₆H₃ rings 72.48(6), 78.98(8).

Molecular Structure of [2,6-(3,5-Xyl)₂C₆H₃Li]₂

The lithium complex $[2,6-(3,5-Xyl)_2C_6H_3Li]_2$ was prepared by reaction of the iodide with *n*BuLi, according to literature methods.^{S4} Single crystals of $[2,6-(3,5-Xyl)_2C_6H_3Li]_2$ suitable for X-ray diffraction were obtained from storage of a saturated hexane solution of the complex at room temperature.

The crystal structure of $[2,6-(3,5-Xyl)_2C_6H_3Li]_2$, consists of two crystallographically independent molecules, and is shown in Fig. S2, along with relevant bond lengths and angles. The structures of both of these molecules consist of dimeric $[2,6-(3,5-Xyl)_2C_6H_3Li]_2$ units with no crystallographically-imposed symmetry, which is unlike that found for the solid state structures of the pentamethylphenyl-subtituted *m*-terphenyl lithiate $[2,6-Pmp_2C_6H_3Li]_2^{S2}$ and the phenoxy ether complex $[2,6-(PhO)_2C_6H_3Li(OEt_2)]_2$.^{S5}

Fig. S2 Molecular structure of both crystallographically independent molecules of $[2,6-(3,5-Xyl)_2C_6H_3Li]_2$, with displacement ellipsoids set at the 40% probability level. Dashed lines indicate short C···Li distances. Hydrogen atoms and minor disorder components of the C(23)-C(28) and C(81)-C(86) rings are omitted for clarity. Relevant bond lengths (Å) and angles (°): Li(1)-C(1) = 2.170(6), Li(2)-C(1) = 2.177(6), Li(1)-C(23) = 2.12(2), Li(2)-C(23) = 2.14(2), Li(3)-C(45) = 2.190(6),

$$Li(4)-C(45) = 2.166(7), Li(3)-C(67) = 2.152(6), Li(4)-C(67) = 2.190(6),$$

 $Li(1)\cdots Li(2) = 2.322(8), Li(3)\cdots Li(4) = 2.316(8), Li(1)-C(1)-Li(2) = 64.6(2),$
 $Li(1)-C(23)-Li(2) = 66.1(6), Li(1)-C(23A)-Li(2) = 62.8(6), Li(3)-C(45)-Li(4) = 64.4(2), Li(3)-C(67)-Li(4) = 64.5(2).$

	2,6-(2,6-	2,6-(3,5-	2,6-(Pmp) ₂ C ₆ H ₃ I	[2,6-(3,5-
	Xyl) ₂ C ₆ H ₃ I	Xyl) ₂ C ₆ H ₃ I		Xyl) ₂ C ₆ H ₃ Li] ₂
Formula	$C_{22}H_{21}I$	$C_{22}H_{21}I$	$C_{28}H_{33}I$	$C_{44}H_{42}Li_2$
$M_{ m w}$	412.29	412.29	496.44	584.65
Crystal system	Monoclinic	Orthorhombic	Triclinic	Monoclinic
Space Group	C2/c	Pnma	<i>P</i> -1	$P2_1/n$
Crystal size/mm	$0.35 \times 0.17 \times 0.08$	$0.61 \times 0.35 \times 0.15$	$0.65 \times 0.45 \times 0.23$	$0.34 \times 0.23 \times 0.12$
a (Å)	14.2219(8)	7.759(2)	8.708(2)	10.6871(3)
b (Å)	8.8418(8)	27.311(8)	9.292(3)	42.4827(9)
<i>c</i> (Å)	16.0675(13)	8.450(2)	15.373(4)	15.9595(4)
α (°)	90	90	73.294(4)	90
β (°)	112.897(7)	90	77.896(4)	106.596(3)
γ (°)	90	90	77.855(4)	90
$V(Å^3)$	1861.2(3)	1790.6(9)	1149.9(5)	6944.0(3)
Ζ	4	4	2	8
$T(\mathbf{K})$	90(2)	90(2)	90(2)	120(2)
D_{calc} (g cm ⁻³)	1.471	1.529	1.434	1.118
F_{000}	824	824	508	2496
$\mu (\mathrm{mm}^{-1})$	1.718	1.786	1.404	0.460
θ range for data collection	2.75-27.26	2.98-25.03	2.32-27.38	3.07-66.60
(°)				
Max. and min.	0.430 and 0.356	0.397 and 0.309	0.746 and 0.540	1.212 and 0.987
transmission				
reflns measd	8903	7411	9719	30836
independent reflns	2084	1610	5041	12192
R _{int}	0.0363	0.0281	0.0256	0.0342
Final GooF	1.10	1.50	1.07	1.12
R_1 , w R_2 [$I > 2\sigma(I)$]	0.0318, 0.0739	0.0412, 0.102	0.0329, 0.0891	0.0745, 0.182
R_1 , w R_2 (all data)	0.0371, 0.0758	0.0417, 0.102	0.0336, 0.0900	0.0862, 0.186
min. and max. electron	-0.70, 0.71	-2.63, 1.61	-1.46, 1.61	-0.28, 0.28
densities (e Å ⁻³)				

References

- S1. A. Saednya and H. Hart, Synthesis, 1996, 1455.
- S2. S. Hino, M. M. Olmstead, J. C. Fettinger and P. P. Power, *J. Organomet. Chem.*, 2005, **690**, 1638.
- S3. S. Duttwyler, Q.-Q. Do, A. Linden, K. K. Baldridge and J. S. Siegel, *Angew. Chem. Int. Ed.*, 2008, 47, 1719.
- S4. R. J. Wehmschulte, A. A. Diaz, and M. A. Khan, Organometallics, 2003, 22, 83.
- S5. A. J. Blake, A. L. Gower, W. Lewis, G. J. Moxey, T. J. Reade and D. L. Kays, J. Organomet. Chem., 2011, 696, 1787.