Supplementary information

Insertion of alkynes into Pt-X bonds of square planar $[PtX_2(N \land N)]$ (X = Cl, Br, I) complexes

Michele Benedetti,^{a*} Vincenza Lamacchia,^b Daniela Antonucci,^a Paride Papadia,^a Concetta Pacifico,^b Giovanni Natile,^b Francesco P. Fanizzi.^{a*}

^a Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy. E-mail: fp.fanizzi@unisalento.it or michele.benedetti@unisalento.it; Fax: +39 0832 298626; Tel: +39 0832 298867.

^b Dipartimento di Chimica, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy.

Figure 1S. (A) ¹H NMR spectrum (CDCl₃ solution) of complex [Ptl₂(Me₂phen)], **3**, signals (**a**). (**B**) Previous solution treated with excess acetylene and leading to formation of complex [Ptl₂(η^2 -CH=CH)(Me₂phen)] (**4**), signals (**b**). (**C**) Previous solution after 1.5 h showing formation of [PtBr(η^1 -*E*-CH=CHI)(η^2 -CH=CH)(Me₂phen)] (**8**), signals (**d**).

Figure 2S. 2D [¹H,¹³C]-HETCOR NMR spectrum, in CDCl₃, of complex [PtBr(η^{1} -*E*-CH=CHBr)(η^{2} -CH=CH)(Me₂phen)] (6), obtained by reacting [PtBr₂(Me₂phen)] (2), with a large excess of acetylene at room temperature (A). Enlargement of the cross peaks formed in the vinylic region (B-C).

Figure 3S. 2D [¹H,¹³C]-HSQC spectrum of complex [PtBr(η^{1} -*E*-CH=CHBr)(η^{2} -CH₂=CH₂)(Me₂phen)] (7).

Figure 4S. 1D ¹H and 2D [¹H,¹H]-COSY NMR spectrum, in CDCl₃, of complex *syn* and *anti*-[PtBr(η^{1} -*E*-CH=CHBr)(η^{2} -propene)(Me₂phen)], *syn* and *anti*-**10**, obtained by reacting [PtBr(η^{1} -*E*-CH=CHBr)(η^{2} -CH=CH)(Me₂phen)] (**6**), with a large excess of propene.

Figure 5S. 1D ¹H and 2D [¹H,¹H]-COSY NMR spectrum, in CDCl₃, of complex *syn* and *anti*-[PtBr(η^{1} - κ -*E*-CH=CHBr)(η^{2} -*cis*-2-butene)(Me₂phen)], *syn* and *anti*-**11**, obtained by reacting [PtBr(η^{1} -*E*-CH=CHBr)(η^{2} -CH=CH)(Me₂phen)] (**6**), with a large excess *cis*-2-butene.

Figure 6S. Ortep drawing for the molecular structure and atomic numbering scheme for complex [PtBr(η^{1} -*E*-CH=CHBr)(η^{2} -CH₂=CH₂)(Me₂phen)] (**7**). Two non equivalent molecules (**A** and **B**) are present in the asymmetric unit. Thermal ellipsoids are drawn at 30% probability level.

Table 1S. Crystal Data and Structure Refinement parameters for $[PtBr(Me_2phen)(\eta^1-E-CH=CHBr)(\eta^2-CH_2=CH_2)]$ (7). [40]

Empirical formula	$C_{18}H_{18}Br_2N_2Pt$	
fw	617.25	
temp/K	293(2)	
wavelength/Å	0.71073	
crystal system, space group	Monoclinic, P2 ₁ /n	
unit cell dimensions		
a/Å	12.288(5)	
b/Å	21.385(5)	
c/Å	15.250(5)	
β	112.040(5)	
V/Å ³	919.69(3)	
Z	8	
calcd density/Mg/m ³	2.207	
abs coeff/mm ⁻¹	11.858	
F(000)	2304	
crystal size/mm ³	0.250 x 0.200 x 02	
θ range for data collcn/deg	2.03 to 27.58.	
index ranges	0≤h≤15, 0≤k≤27, -19≤l≤18	
reflections collected	8313	
independent reflections	8313 [R(int) = 0.0255]	
data/ restraints/params	8313 / 0 / 420	
goodness-of-fit on F ²	0.894	
final R indices [I>2sigma(I)]	R1 = 0.0685, wR2 = 0.1596	

R indices (all data)	R1 = 0.1891, wR2 = 0.1564	
largest diff. peak and hole	7.884 and -2.277 e.Å ⁻³	

Pt1-N1	2.23(1)	N1-Pt1-Br1	87.8(3)
Pt1-N2	2.19(1)	C15-Pt1-C16	41.4(6)
Pt1-Br1	2.556(2)	C15-Pt1-N2	162.3(6)
Pt1-C15	2.06(2)	C16-Pt1-N2	121.0(7)
Pt1-C16	2.07(2)	C17-Pt1-N2	91.8(7)
Pt1-C17	1.98(2)	N2-Pt1-Br1	87.0(3)
Pt2-N3	2.19(1)	N3-Pt2-N4	75.0(5)
Pt2-N4	2.21(1)	N3-Pt2-C33	163.5(9)
Pt2-Br3	2.565(2)	N3-Pt2-C34	122.9(7)
Pt2-C33	2.08(2)	N3-Pt2-C35	88.6(7)
Pt2-C34	2.07(2)	N3-Pt2-Br3	89.1(4)
Pt2-C35	2.07(2)	C33-Pt2-C34	40.6(8)
N1-Pt1-N2	75.2(5)	C33-Pt2-N4	121.4(9)
N1-Pt1-C15	122.3(6)	C34-Pt2-N4	162.0(8)
N1-Pt1-C16	163.7(6)	C35-Pt2-N4	88.0(9)
N1-Pt1-C17	91.6(7)	N4-Pt2-Br3	91.7(4)

Table 2S. Selected Bond Lengths [Å] and Angles (deg) for $[PtBr(Me_2phen)(\eta^1-E-CH=CHBr)(\eta^2-CH_2=CH_2)]$, 7.

Red crystals of $[PtBr(\eta^1-E-CH=CHBr)(\eta^2-CH_2=CH_2)(Me_2phen)]$ (7), were obtained from a chloroform/hexane solution. X-ray data were collected with a Siemens *P*3 automatic four circle diffractometer by using Mo-Ka radiation ($\lambda = 0.71069$ Å). A total of 8313 reflections were collected in the range 0 < h < 15, 0 < k < 27, -19 < l < 18; 3808 were the independent reflections. Three reflections were monitored during data collection after every 97 reflections. The full data set was corrected for Lorenz polarization effects. The absorption correction was performed via the ψ -scan technique. The structure was solved by using direct methods technique in the P 21/*n* space group. The model was refined by full-matrix least-square methods. Anisotropic thermal parameters were applied for all non-hydrogen atoms. The hydrogen atoms were placed at their geometrically calculated positions and included in the full-matrix least-square cycles with isotropic thermal parameters (U) tied at the values of U of relative carbon or nitrogen atoms. All calculation and molecular graphics were carried out using SIR97, ⁴⁴ SHELXL97, ⁴⁵ PARST97, ⁴⁶ and ORTEP-3 for Windows ⁴⁷ packages.

References

44. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterno, G. Polidoro, R. Spagna, SIR97., *A program for automatic solution and refinement of crystal structure*, **1996**.

45. G. M. Sheldrick, SHELXL97, *Program for the refinement of crystal structures*. University of Göttingen, Germany, **1997**.

46. M. Nardelli, PARST 97, *A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis*. University of Parma, Italy, **1996**.

47. L. J. Farrugia, J. Appl. Cryst., 1997, 30, 565.