## **Supplementary Information**

## Anion templating from a silver(I) dithiophosphate 1D polymer forming discrete cationic and neutral octa- and decanuclear silver(I) clusters

Jian-Hong Liao,<sup>a</sup> Hao-Wei Chang,<sup>a</sup> Yi-Juan Li,<sup>a</sup> Ching-Shiang Fang,<sup>a</sup> Bijay Sarkar,<sup>a</sup> Werner E. van Zyl,<sup>\*,b</sup> and C. W. Liu<sup>\*,a</sup>

<sup>a</sup>Department of Chemistry, National Dong Hwa University, Hualien, Taiwan 97401, R.O.C. Fax: +886-3-8633570, E-mail: chenwei@mail.ndhu.edu.tw <sup>b</sup>School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa . E-mail: vanzylw@ukzn.ac.za



**Figure S1** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $[Ag_5{S_2P(O^iPr)_2}_4]_n(PF_6)_n, 1.$ 





**Figure S3** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $[Ag_8(\mu_8-F){S_2P(O^iPr)_2}_6](PF_6), 2.$ 



**Figure S4** <sup>1</sup>H NMR spectrum of  $[Ag_8(\mu_8-F){S_2P(O^iPr)_2}_6](PF_6)$ , **2**.



**Figure S5** <sup>19</sup>F NMR spectrum of  $[Ag_8(\mu_8-F){S_2P(O^iPr)_2}_6](PF_6)$ , **2**. Inset is the magnetude around -166 ppm.





**Figure S7** <sup>1</sup>H NMR spectrum of  $[Ag_8(\mu_8-Cl){S_2P(O^iPr)_2}_6](PF_6)$ , **3**.



**Figure S8** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $[Ag_8(\mu_8-Br){S_2P(O^iPr)_2}_6](PF_6)$ , 4.



Figure S9 <sup>1</sup>H NMR spectrum of  $[Ag_8(\mu_8-Br){S_2P(O^iPr)_2}_6](PF_6)$ , 4.



Figure S10 <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $[Ag_8(\mu_4-H){S_2P(O^iPr)_2}_6](PF_6), 5.$ 



**Figure S11** <sup>1</sup>H NMR spectrum of  $[Ag_8(\mu_4-H){S_2P(O^iPr)_2}_6](PF_6)$ , **5**. Inset is the magnitude around 6.0 ppm.



**Figure S12** <sup>109</sup>Ag{<sup>1</sup>H} NMR spectrum of  $[Ag_8(\mu_4-H){S_2P(O^iPr)_2}_6](PF_6)$ , **5**. Inset is the magnitude around 967 ppm.



**Figure S13** The splitting patterns of compound 5 that consisting one doublet in (a) <sup>109</sup>Ag NMR and one nonet in (b) <sup>1</sup>H NMR spectra. (c) Simulated Intensity ratio for a nonet resonance.



Figure S14  ${}^{31}P{}^{1}H$  NMR spectrum of  $[Ag_8(D){S_2P(O^iPr)_2}_6](PF_6), 5'$ .



**Figure S15**<sup>1</sup>H NMR spectrum of  $[Ag_8(D){S_2P(O^iPr)_2}_6](PF_6), 5'$ .



**Figure S17** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $[Ag_8(\mu_8-S){S_2P(O^iPr)_2}_6]$ , 6.

![](_page_9_Figure_0.jpeg)

Figure S18<sup>1</sup>H NMR spectrum of  $[Ag_8(\mu_8-S){S_2P(O^iPr)_2}_6]$ , 6.

![](_page_9_Figure_2.jpeg)

Figure S19<sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $[Ag_{10}(\mu_9-I)(\mu_3-I)_3\{S_2P(O^iPr)_2\}_6], 7.$ 

![](_page_10_Figure_0.jpeg)

Figure S20 <sup>1</sup>H NMR spectrum of  $[Ag_{10}(\mu_9-I)(\mu_3-I)_3{S_2P(O^iPr)_2}_6], 7.$ 

![](_page_10_Figure_2.jpeg)

**Figure S21** <sup>31</sup>P{<sup>1</sup>H} NMR spectra of monitoring the conversion within 15 minutes from  $[Ag_{10}(\mu_9-I)(\mu_3-I)_3{S_2P(O^iPr)_2}_6]$  to  $[Ag_{11}(\mu_9-I)(\mu_3-I)_3{S_2P(O^iPr)_2}_6]PF_6$  by adding one equivalent (relative to  $[Ag_{10}(\mu_9-I)(\mu_3-I)_3{S_2P(O^iPr)_2}_6]$ ) of  $[Ag(CH_3CN)_4]PF_6$ .