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Table S1. Magneto-structural parameters of Gd(III) compounds with only two O:2OO 
carboxylic bridges, so-called A-type bridge# and two O:2OO and two OO syn-syn 
carboxylic bridges, so-called B-type bridge.

Compounda Gd–O–Gd (º) dGd···Gd 
(Å)

dGd–O (Å) Topology J (cm–1)b Ref.

A-type
[Gd2(CH3CO2)6(H2O)4]·4H2O 115.48 4.206 2.402/2.571 dinuclear 0.060 1
[Gd2(CH3CO2)6(H2O)4]·4H2O 115.31 4.183 2.393/2.558 dinuclear 0.060 2
[NH3C2H5][Gd(Cl2CHCO2)4]c 113.50 4.181 2.443/2.556 1D alt. 0.058 3
[Gd2(mal)3(H2O)6]∞d 116.8 4.2763 2.308/2.597 3D/dinuclear 0.048 4
[NH3CH3][Gd(Cl2CHCO2)4]∞c 114.07 4.184 2.449/2.538 1D alt. 0.046 5
{[Gd(cit)(H2O)2]·H2O}∞ 118.49 4.321 2.508/2.521 1D/dinuclear 0.039 6
[Gd2(CH3CO2)2(dbm)4(MeOH)2] 113.65 4.128 - dinuclear 0.038 7
[Gd2(CH3CO2)6(H2O)4]·2H2O 115.47 4.1589 2.378/2.539 dinuclear 0.031 8
[Gd(Hnica)(H2O)2(SO4)]∞e 113.35* 4.2555* 2.4505/2.6445* 1D alt. 0.030 9
{[Gd2(ox)(fum)2(H2O)4]·4H2O}∞ 119.1 4.5816 - 3D/1D 0.019 8
2 {[Gd(butOH)3(H2O)]·H2O}∞ 113.375* 4.1115* 2.3925/2.5265* 3D/1D 0.0132 this work
[Gd2(tpac)6(H2O)4] 112.5 4.1255 2.412/2.547 dinuclear –0.014 10
[Gd2(pac)6(H2O)4] 113.16 4.1215 2.394/2.543 dinuclear –0.0309 10
B-type
[Gd2(Hsal)6(H2O)8]f - 4.25 - dinuclear 0.050 11
[Gd2(Cl2CHCO2)6(H2O)2(hypy)2] 107.64 4.051 2.378/2.638 dinuclear –0.022 12
[Gd(CF2HCO2)3(phen)] 106.92 4.034 2.354/2.662 dinuclear –0.032 13
[Gd2(ClCH2CO2)6(bipy)2] 106.585 3.99 2.372/2.602 dinuclear –0.040 14
[Gd2(CH3CO2)6(phen)2] 102.5 4.035 2.441/2.726 dinuclear –0.053 15
[Gd2(CH3CO2)2(fum)2(H2O)4]∞ 105.9 3.866 - 2D/dinuclear –0.076 8
[Gd(Bz)3(dmf)]∞g 105.801 3.914 2.325/2.578 1D alt. –0.097 16
# Compound [Gd4(CH3CO2)4(acac)8(H2O)4] is not included because its alternate chain structure involves successive A-
type and di(O:2OO-carboxylato) bridges, while only one interaction constant has been derived.7 Compound 
{Gd4(bta)3(H2O)16]·12H2O}∞ is not included either, although its 3D structure is built on mononuclear and dinuclear Gd(III) 
units, the latter with A-type bridge.17 The reported exchange coupling interaction was however apparently derived using a 
model considering only the dinuclear units, and is therefore probably not reliable. a abbreviations: H2mal = malonic acid; 
cit = citrate ion, (C6H5O7)3–; Hdbm = dibenzoylmethane; H2nica = 2-hydroxynicotinic acid; H2ox = oxalic acid; H2fum = 
fumaric acid; HbutOH = 4-hydroxybutanoic acid; Htpac = 3-thiophenacetic acid; Hpac = pentanoic acid; H2sal = salicylic 
acid; hypy = 4-(1H)-pyridone; phen = phenantroline; bipy = 2,2’-bipyridine; HBz = benzoic acid; dmf = N,N’-
dimethylformamide; Hacac = 2,4-pentandione or acetylacetone; H4bta = 1,2,4,5-benzenetetracarboxylic acid. b 
Exchange constant are those corresponding the Hamiltonian H = –Jsisj. c The 1D structure in these compounds is built 
on alternating A-type ferromagnetic and tetra(:1O:1O’-carboxylato) antiferromagnetic bridges, and an interaction 
constant has been derived for both. The former dominates the magnetic properties, and the data given here correspond 
only to the A-type bridge. d Structure made of dinuclear unit with A-type bridges connected into a 3D network through the 
malonate ligands. e the structure of this compound is made of 1D chains with very similar alternate A-type bridges, 
except one of these bridges has an additional sulfate bridge. f The structure of this compound is not known, but WAXS 
data confirm its similarity to the reported Er analogue and provide an evaluation of the Gd···Gd separation. g The 1D 
structure in this compound is built on alternating B-type and di(:1O:1O’-carboxylato) bridges, but the magnetic 
properties have been modeled with a dimer model with one sole interaction constant, ascribed to the B-type bridge. * 
Average values of the structurally different bridges, two very similar in 2 and two quite dissimilar in 
[Gd(Hnica)(H2O)2(SO4)]. The value given for 2 derives from zJ/kB = 0.052 cm-1 (see text) and z = 4, as an average value.
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Figure S1. Labeled view of two successive Gd···Gd bridges along the coordination chains 
in the structure of 1. The Gd1-O1-O3-Gd1 planes are tilted by 59.8º, but the chain remains 
close linear with a Gd···Gd···Gd angle of 174.15º.
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Figure S2. Labeled view of the two successive slightly different Gd···Gd bridges along the 
coordination chains in the structure of 2. The Gd1-O5-O5-Gd1 and Gd1-O7-O7-Gd1 
planes 87.4º, resulting in a zig-zag chain with a Gd···Gd···Gd angle of 98.23º.
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Figure S3. Field dependence of isothermal magnetization for 1 (green dots) and 2 (blue 
dots) at 2 K. The full line is the Brillouin function for S = 7/2 and g = 2.
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Figure S4. Inverse of magnetic susceptibility -1 vs T for 1 and 2. Solid lines are best fits of 
Curie-Weiss law.
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Figure S5. Temperature dependence of the experimental entropy normalized per Gd(III) 
ion and R, for 1 (top panel) and 2 (bottom panel). We cope with the lack of specific heat 
data at the lowest temperatures and B = 0 and 1 T (see Fig. 4) by scaling Sm

 /R to the 
high-temperature limit ln(sGd+1), as dashed lines.
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Figure S6. Field dependence of isothermal magnetization for 1 (top) and 2 (bottom) in the 
temperature range 2 – 10 K.
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Figure S7. Temperature-dependencies of the magnetic entropy change, ΔSm, normalized 
to Gd(III) ions and gas constant R, for the indicated applied-field changes ΔB, as obtained 
from specific heat data for 1 (filled markers) and 2 (empty markers).
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Figure S8. Correlation of the exchange coupling in Gd(III) pairs bridged by either two 
O:2OO carboxylates (A-type, black dots) or two O:2OO and two OO syn-syn 
carboxylates (B-type, brown rhombs), respectively vs. the Gd···Gd separation (left) and 
the Gd–O–Gd angle (right). Grey dots are compounds with two different di(O:2OO 
carboxylate) bridges for which average values of the Gd···Gd separation and Gd–O–Gd 
angle have been used. The full line is a guide for the eye highlighting the reasonable 
correlation of data for A-type bridges. The brown dashed line is a linear fit of the data for 
B-type bridges. The value given for 2 derives from zJ/kB = 0.052 cm-1 (see text) and z = 4, 
as an average value.
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