Supporting Information

to the paper entitled

Cryogenic magneto-caloric effect and magneto-structural correlations in carboxylate-bridged Gd(III) compounds

O. Roubeau, G. Lorusso, S. J. Teat and M. Evangelisti

Table of Contents

Table S1. Relevant magneto-structural parameters of Gd(III) compounds	p. S2	
Figure S1. Labeled view of two successive Gd···Gd bridges along the coordination		
chains in the structure of 1	p. S3	
Figure S2. Labeled view of the two successive slightly different Gd···Gd bridges	p. S4	
along the coordination chains in the structure of 2 .	p. 0 i	
Figure S3. Field dependence of isothermal magnetization for 1 and 2 at 2 K	p. S5	
Figure S4. Temperature dependence of χ^{-1} for 1 and 2	p. S5	
Figure S5. Temperature dependence of S_m for 1 and 2	p. S6	
Figure S6. Field dependence of isothermal magnetization for 1 and 2 at 2-10 K	p. S7	
Figure S7. Magnetic entropy changes for 1 and 2 normalized to <i>R</i>	p. S8	
Figure S8. Magneto-structural correlations for Gd(III) pairs with A- and B-type	p. S9	
bridges.	r	
References	p. S10	

Table S1. Magneto-structural parameters of Gd(III) compounds with only two μ O: κ^2 OO carboxylic bridges, so-called A-type bridge[#] and two μ O: κ^2 OO and two μ OO *syn-syn* carboxylic bridges, so-called B-type bridge.

Compound ^a	Gd–O–Gd (°)	d _{Gd⋯Gd} (Å)	d _{Gd−O} (Å)	Topology	J (cm⁻¹) ^b	Ref.
A-type						
$[Gd_2(CH_3CO_2)_6(H_2O)_4] \cdot 4H_2O$	115.48	4.206	2.402/2.571	dinuclear	0.060	1
[Gd ₂ (CH ₃ CO ₂) ₆ (H ₂ O) ₄]·4H ₂ O	115.31	4.183	2.393/2.558	dinuclear	0.060	2
[NH ₃ C ₂ H ₅][Gd(Cl ₂ CHCO ₂) ₄] ^c	113.50	4.181	2.443/2.556	1D alt.	0.058	3
[Gd₂(mal) ₃ (H₂O) ₆] _∞ ^d	116.8	4.2763	2.308/2.597	3D/dinuclear	0.048	4
[NH ₃ CH ₃][Gd(Cl ₂ CHCO ₂) ₄] _∞ ^c	114.07	4.184	2.449/2.538	1D alt.	0.046	5
{[Gd(cit)(H ₂ O) ₂]·H ₂ O} _∞	118.49	4.321	2.508/2.521	1D/dinuclear	0.039	6
$[Gd_2(CH_3CO_2)_2(dbm)_4(MeOH)_2]$	113.65	4.128	-	dinuclear	0.038	7
[Gd ₂ (CH ₃ CO ₂) ₆ (H ₂ O) ₄]·2H ₂ O	115.47	4.1589	2.378/2.539	dinuclear	0.031	8
[Gd(Hnica)(H₂O)₂(SO₄)]∞ ^e	113.35*	4.2555*	2.4505/2.6445*	1D alt.	0.030	9
{[Gd ₂ (ox)(fum) ₂ (H ₂ O) ₄]·4H ₂ O} _∞	119.1	4.5816	-	3D/1D	0.019	8
2 {[Gd(butOH) ₃ (H ₂ O)]·H ₂ O} _∞	113.375*	4.1115*	2.3925/2.5265*	3D/1D	0.0132	this work
[Gd ₂ (tpac) ₆ (H ₂ O) ₄]	112.5	4.1255	2.412/2.547	dinuclear	-0.014	10
[Gd ₂ (pac) ₆ (H ₂ O) ₄]	113.16	4.1215	2.394/2.543	dinuclear	-0.0309	10
B-type						
[Gd ₂ (Hsal) ₆ (H ₂ O) ₈] ^f	-	4.25	-	dinuclear	0.050	11
$[Gd_2(Cl_2CHCO_2)_6(H_2O)_2(hypy)_2]$	107.64	4.051	2.378/2.638	dinuclear	-0.022	12
[Gd(CF ₂ HCO ₂) ₃ (phen)]	106.92	4.034	2.354/2.662	dinuclear	-0.032	13
[Gd ₂ (CICH ₂ CO ₂) ₆ (bipy) ₂]	106.585	3.99	2.372/2.602	dinuclear	-0.040	14
[Gd ₂ (CH ₃ CO ₂) ₆ (phen) ₂]	102.5	4.035	2.441/2.726	dinuclear	-0.053	15
[Gd ₂ (CH ₃ CO ₂) ₂ (fum) ₂ (H ₂ O) ₄] _∞	105.9	3.866	-	2D/dinuclear	-0.076	8
[Gd(Bz)₃(dmf)]∞ ^g	105.801	3.914	2.325/2.578	1D alt.	-0.097	16

Compound [Gd₄(CH₃CO₂)₄(acac)₈(H₂O)₄] is not included because its alternate chain structure involves successive Atype and di(μ O: κ^2 OO-carboxylato) bridges, while only one interaction constant has been derived.⁷ Compound {Gd₄(bta)₃(H₂O)₁₆] 12H₂O}_∞ is not included either, although its 3D structure is built on mononuclear and dinuclear Gd(III) units, the latter with A-type bridge.¹⁷ The reported exchange coupling interaction was however apparently derived using a model considering only the dinuclear units, and is therefore probably not reliable. ^a abbreviations: H₂mal = malonic acid; cit = citrate ion, $(C_6H_5O_7)^{3-}$; Hdbm = dibenzoylmethane; H₂nica = 2-hydroxynicotinic acid; H₂ox = oxalic acid; H₂fum = fumaric acid; HbutOH = 4-hydroxybutanoic acid; Htpac = 3-thiophenacetic acid; Hpac = pentanoic acid; H₂sal = salicylic acid; hypy = 4-(1H)-pyridone; phen = phenantroline; bipy = 2,2'-bipyridine; HBz = benzoic acid; dmf = N,N'dimethylformamide; Hacac = 2,4-pentandione or acetylacetone; H4bta = 1,2,4,5-benzenetetracarboxylic acid. b Exchange constant are those corresponding the Hamiltonian $H = -Js_i s_i$. ^c The 1D structure in these compounds is built on alternating A-type ferromagnetic and tetra(μ O: κ^1 O'-carboxylato) antiferromagnetic bridges, and an interaction constant has been derived for both. The former dominates the magnetic properties, and the data given here correspond only to the A-type bridge. ^d Structure made of dinuclear unit with A-type bridges connected into a 3D network through the malonate ligands. ^e the structure of this compound is made of 1D chains with very similar alternate A-type bridges, except one of these bridges has an additional sulfate bridge. f The structure of this compound is not known, but WAXS data confirm its similarity to the reported Er analogue and provide an evaluation of the Gd...Gd separation. 9 The 1D structure in this compound is built on alternating B-type and di(µO:κ¹O'-carboxylato) bridges, but the magnetic properties have been modeled with a dimer model with one sole interaction constant, ascribed to the B-type bridge. * Average values of the structurally different bridges, two very similar in 2 and two quite dissimilar in $[Gd(Hnica)(H_2O)_2(SO_4)]$. The value given for **2** derives from $zJ/k_B = 0.052$ cm⁻¹ (see text) and z = 4, as an average value.

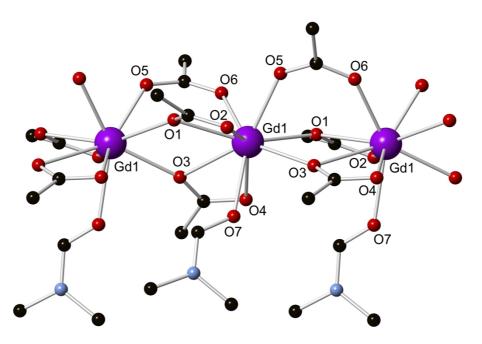


Figure S1. Labeled view of two successive $Gd\cdots Gd$ bridges along the coordination chains in the structure of **1**. The Gd1-O1-O3-Gd1 planes are tilted by 59.8°, but the chain remains close linear with a Gd \cdots Gd angle of 174.15°.

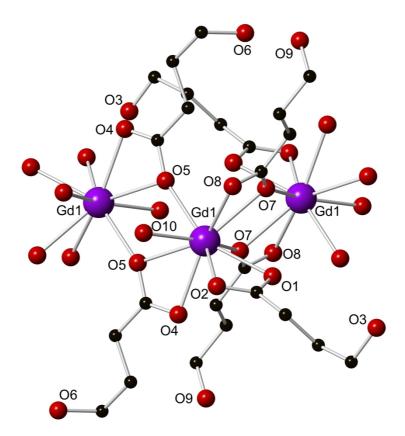


Figure S2. Labeled view of the two successive slightly different Gd \cdots Gd bridges along the coordination chains in the structure of **2**. The Gd1-O5-O5-Gd1 and Gd1-O7-O7-Gd1 planes 87.4°, resulting in a zig-zag chain with a Gd \cdots Gd \cdots Gd angle of 98.23°.

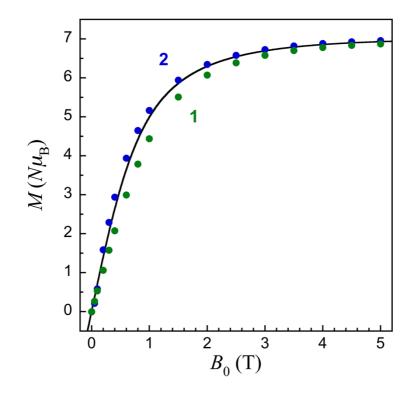


Figure S3. Field dependence of isothermal magnetization for **1** (green dots) and **2** (blue dots) at 2 K. The full line is the Brillouin function for S = 7/2 and g = 2.

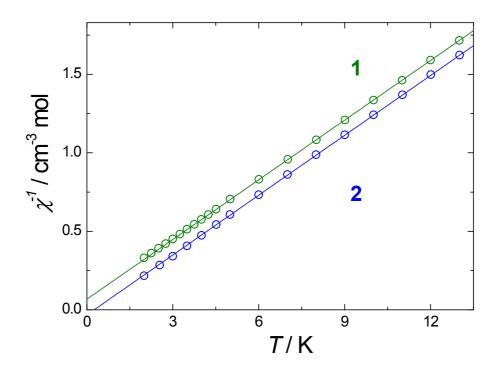


Figure S4. Inverse of magnetic susceptibility χ^{-1} vs *T* for **1** and **2**. Solid lines are best fits of Curie-Weiss law.

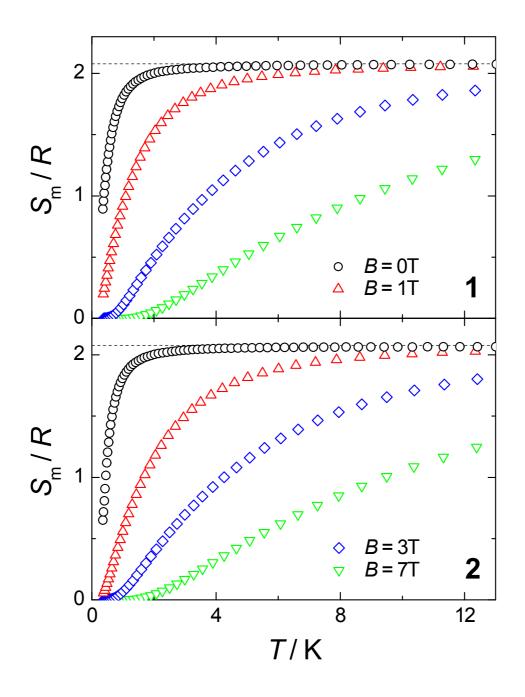


Figure S5. Temperature dependence of the experimental entropy normalized per Gd(III) ion and *R*, for **1** (top panel) and **2** (bottom panel). We cope with the lack of specific heat data at the lowest temperatures and *B* = 0 and 1 T (see Fig. 4) by scaling S_m / R to the high-temperature limit ln(s_{Gd} +1), as dashed lines.

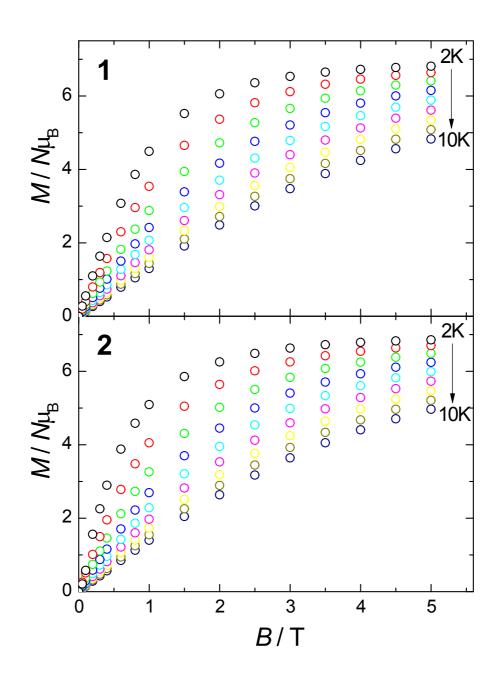


Figure S6. Field dependence of isothermal magnetization for **1** (top) and **2** (bottom) in the temperature range 2 - 10 K.

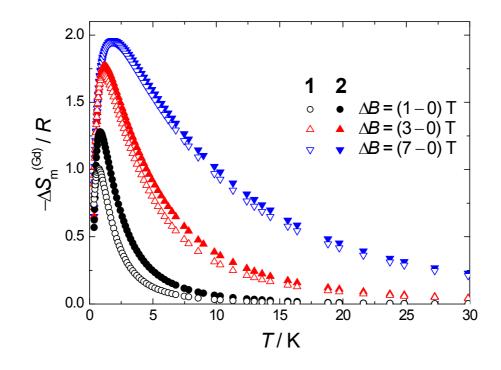


Figure S7. Temperature-dependencies of the magnetic entropy change, ΔS_m , normalized to Gd(III) ions and gas constant *R*, for the indicated applied-field changes ΔB , as obtained from specific heat data for **1** (filled markers) and **2** (empty markers).

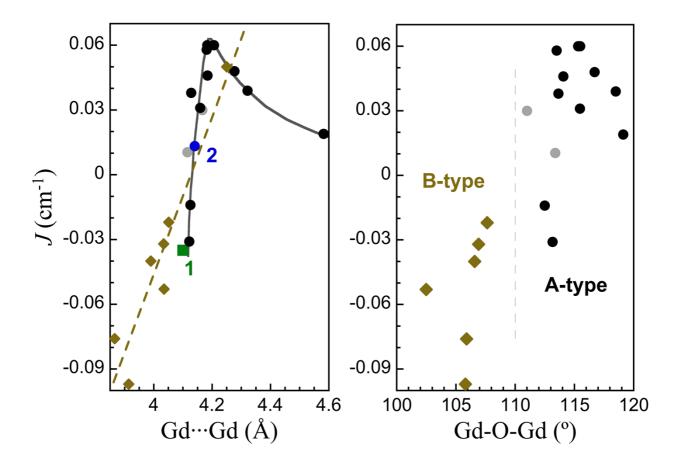


Figure S8. Correlation of the exchange coupling in Gd(III) pairs bridged by either two μ O: κ^2 OO carboxylates (A-type, black dots) or two μ O: κ^2 OO and two μ OO *syn-syn* carboxylates (B-type, brown rhombs), respectively vs. the Gd…Gd separation (left) and the Gd–O–Gd angle (right). Grey dots are compounds with two different di(μ O: κ^2 OO carboxylate) bridges for which average values of the Gd…Gd separation and Gd–O–Gd angle have been used. The full line is a guide for the eye highlighting the reasonable correlation of data for A-type bridges. The brown dashed line is a linear fit of the data for B-type bridges. The value given for **2** derives from $zJ/k_B = 0.052$ cm⁻¹ (see text) and z = 4, as an average value.

References.

1 a) S. T. Hatscher, W. Urland, *Angew. Chem. Int. Ed.* **2003**, 42, 2862-2864; b) M. C. Favas, D. L. Kepert, B. W. Skelton, A. H. White, J. *Chem. Soc. Dalton* **1980**, 454-458

2 M. Evangelisti, O. Roubeau, E. Palacios, A. Camón, T. N. Hooper, E. K. Brechin, J. J. Alonso, *Angew. Chem. Int. Ed.* **2011**, 50, 6606-6609

3 A. Rohde, W. Urland, J. Alloys Compd. 2006, 408-412, 618-621

4 M. Hernández-Molina, C. Ruiz-Pérez, T. López, F. Lloret, M. Julve, Inorg. Chem. 2003, 42, 5456-5458

5 A. Rohde, W. Urland, Z. Anorg. Allg. Chem. 2005, 631, 417-420

6 R. Baggio, R. Calvo, M. T. Garland, O. Peña, M. Perec, A. Rizzi, Inorg. Chem. 2005, 44, 8979-8987

7 F-S. Guo, J-D. Leng, J-L. Liu, Z-S. Meng, M-L. Tong, Inorg. Chem. 2012, 51, 405-413

8 L. Cañadillas-Delgado, O. Fabelo, J. Cano, J. Pasán, F. S. Delgado, F. Lloret, M. Julve, C. Ruiz-Pérez, *CrystEngComm* **2009**, 11, 2131-2142

9 N. Xu, W. Shi, D-Z. Liao, S-P. Yan, P. Cheng, Inorg. Chem. 2008, 47, 8748-8756

10 L. Cañadillas-Delgado, O. Fabelo, J. Pasán, F. S. Delgado, F. Lloret, M. Julve, C. Ruiz-Pérez, *Dalton Trans.* **2010**, 39, 7286-7293

11 J-P. Costes, J. M. Clemente-Juan, F. Dahan, F. Nicodème, M. Verelst, Angew. Chem. Int. Ed. 2002, 41, 323-325

12 D. John, W. Urland, Eur. J. Inorg. Chem. 2006, 3503-3509

13 D. John, W. Urland, Z. Anorg. Allg. Chem. 2005, 631, 2635-2637

14 D. John, W. Urland, Eur. J. Inorg. Chem. 2005, 4486-4489

15 A. Panagiotopoulos, T. F. Zafiropoulos, S. P. Perlepes, E. Bakalbassis, I. Masson-Ramade, O. Kahn, A. Terzis, C. P. Raptopoulou, *Inorg. Chem.* **1995**, 34, 4918-4920

16 A. W-H. Lam, W-T. Wong, S. Gao, G. Wen, X-X. Zhang, Eur. J. Inorg. Chem. 2003, 149-163

17 L. Cañadillas-Delgado, J. Pasán, O. Fabelo, M. Julve, F. Lloret, C. Ruiz-Perez, *Polyhedron* **2013**, 52, 321-332