Supplementary information to be published electronically for the paper:

Polypyrrole-Functionalized Ruthenium Carbene Catalysts as Efficient Heterogeneous Systems for Olefin Epoxidation.

Mohamed Dakkach,^{*a,b*} Xavier Fontrodona,^{*a*} Teodor Parella,^{*c*} Ahmed Atlamsani,^{*b*} Isabel Romero,^{*a*,*} Montserrat Rodríguez ^{*a*,*}

^a Departament de Química i Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain. *E-mail:* montse.rodriguez@udg.edu, marisa.romero@udg.edu.

^b Laboratoire des Matériaux et Systèmes Interfaciaux, Département de Chimie, Faculté des Sciences, B.P.: 2121 93000 Tétouan, Morocco.

^c Departament de Química i Servei de RMN Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain.

CONTENTS.

 Table S 1. Crystal data for the X-ray structures of complexes 2a and 2b.

Table S 2. Main bond lengths (Å) and angles (°) for the X-ray structure of complexes 2a and 2b.

Figure S 1. Possible diastereoisomers for complex [Ru^{II}Cl(CN-Me)(bpea-pyr)]⁺, 3.

Figure S 2. NMR spectra (600 MHz, 298 K, d_6 -acetone) of complex *trans,mer*- [Ru^{II}Cl₂(bpea-pyr)(dmso)], 2a: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

Figure S 3. NMR spectra (600 MHz, 298 K, d₆-acetone) of complex *cis_fac*-[Ru^{II}Cl₂(bpea- pyr)(dmso)], **2b**: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

Figure S 4. NMR spectra (600 MHz, 298 K, d_6 -acetone) *trans,fac*-[Ru^{II}Cl(CN-Me)(bpea-pyr)]⁺, **3**: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

Figure S 5. NMR spectra (600 MHz, 298 K, d_6 -acetone) *trans*, *fac*-[Ru^{II}(CN-Me)(bpea-pyr)(H₂O)]²⁺, **4**: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

Figure S 6. Cyclic voltammogram of complex 3 (1 mM) registered in $CH_2Cl_2 + 0.1$ M TBAH at a glassy carbon disk electrode (scan rate = 100 mV s⁻¹).

Figure S 7. Cyclic voltammogram of complex 4 (1 mM) in $CH_2Cl_2 + 0.1$ M TBAH at a glassy carbon disk electrode (scan rate = 100 mV s⁻¹).

Figure S 8. (a) Growing of a **C/poly-3** film in $CH_2Cl_2 + 0.1$ M TBAH at a glassy carbon disk electrode (diameter = 3 mm) by scanning the potential between 0 and 1.3 V throughout 30 cycles (scan rate = 100 mV s⁻¹). (b) Cyclic voltammograms registered after transferring the **C/poly-3** modified electrode into a blank electrolyte solution (5 cycles were registered; final amount of anchored complex = $4.36 \cdot 10^{-10}$ mols cm⁻²).

Figure S 9. Linear regression of $E_{1/2}$ values vs. pH for the cyclic voltammograms of complex 4 registered in aqueous media.

Table S 1. Crystal data for the X-ray structures of complexes 2a and 2b.

	Complex 2a	Complex 2b	
Chemical formula	$C_{21}H_{28}Cl_2N_4OSRu$	C ₂₁ H ₂₈ Cl ₂ N ₄ OSRu	
Molecular weight	556.50	556.50	
Crystal system	Monoclinic	Triclinic	
Space group	P21/c	P-1	
a[Å]	11.0431(5)	9.495(6)	
b[Å]	12.1413(6)	15.469(10)	
c[Å]	17.3390(8)	16.457(10)	
α[°]	90.00	102.506(9)	
β[°]	92.3280(10)	90.074(9)	
γ[°]	90.00	94.764(10)	
V [Å ³]	2322.85(19)	2351(3)	
Z	4	4	
Temperature, K	300(2)	300(2)	
ρ_{calc} , [Mg/m ⁻³]	1.591	1.572	
μ[mm ⁻¹]	1.016	1.003	
R_1^a [I>2 σ (I)]	$R_1 = 0.0257$	$R_1 = 0.1806$	
wR_2^b (all data)	$R_1 = 0.0294$ = 0.0694	$R_1 = 0.2396$ $wR_2 = 0.4656$	

$^{a}R_{1}=\boldsymbol{\Sigma}\big|\big|F_{o}\big|-\big|F_{c}\big|\big|/\boldsymbol{\Sigma}\big|F_{o}\big|$

^b wR₂ = [Σ {w(F_o²-F_c²)²}/ Σ {w(F_o²)²}]^{1/2}, where w = 1/[σ^2 (Fo²) + (0.0042P)²] and P=(F_o²+2F_c²).

Table S 2. Main bond lengths (Å) and angles (°) for the X-ray structure of complexes 2a and 2b.

Complex 2a		Complex 2b	
Ru(1)-N(1)	2,0685(15)	Ru(1)-N(3)	2,04(2)
Ru(1)-N(3)	2,0859(14)	Ru(1)-N(1)	2,097(16)
Ru(1)-N(2)	2,1656(14)	Ru(1)-N(2)	2,162(15)
Ru(1)-S(1)	2,2321(4)	Ru(1)-S(1)	2,227(6)
Ru(1)-Cl(2)	2,3957(5)	Ru(1)-Cl(1)	2,408(6)
Ru(1)-Cl(1)	2,4550(4)	Ru(1)-Cl(2)	2,439(6)
N(1)-Ru(1)-N(3)	160,82(5)	N(3)-Ru(1)-N(1)	82,9(7)
N(1)-Ru(1)-N(2)	81,16(5)	N(3)-Ru(1)-N(2)	82,6(7)
N(3)-Ru(1)-N(2)	79,78(5)	N(1)-Ru(1)-N(2)	82,1(6)
N(1)-Ru(1)-S(1)	96,22(4)	N(3)-Ru(1)-S(1)	91,3(6)
N(3)-Ru(1)-S(1)	102,95(4)	N(1)-Ru(1)-S(1)	173,9(4)
N(2)-Ru(1)-S(1)	174,82(4)	N(2)-Ru(1)-S(1)	99,0(4)
N(1)-Ru(1)-Cl(2)	90,81(4)	N(3)-Ru(1)-Cl(1)	172,6(6)
N(3)-Ru(1)-Cl(2)	88,16(4)	N(1)-Ru(1)-Cl(1)	91,9(4)
N(2)-Ru(1)-Cl(2)	93,20(4)	N(2)-Ru(1)-Cl(1)	91,6(4)
S(1)-Ru(1)-Cl(2)	91,295(16)	S(1)-Ru(1)-Cl(1)	94,1(2)
N(1)-Ru(1)-Cl(1)	90,81(4)	N(3)-Ru(1)-Cl(2)	96,2(6)
N(3)-Ru(1)-Cl(1)	91,17(4)	N(1)-Ru(1)-Cl(2)	90,8(4)
N(2)-Ru(1)-Cl(1)	89,66(4)	N(2)-Ru(1)-Cl(2)	172,9(4)
S(1)-Ru(1)-Cl(1)	85,903(16)	S(1)-Ru(1)-Cl(2)	88,0(2)
Cl(2)-Ru(1)-Cl(1)	176,900(16)	Cl(1)-Ru(1)-Cl(2)	89,1(2)
O(1)-S(1)-Ru(1)	117,59(6)	O(1)-S(1)-Ru(1)	119,4(8)

trans, fac

cis, fac (1)

cis, f ac (2)

down,cis,mer

up,cis,mer

down,trans,mer

up,trans,mer

Figure S 2. NMR spectra (600 MHz, 298 K, d₆-acetone) of complex *trans,mer*- [Ru^{II}Cl₂(bpea-pyr)(dmso)], 2a: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

(a)

(e)

Figure S 3. NMR spectra (600 MHz, 298 K, d₆-acetone) of complex *cis,fac*-[Ru^{II}Cl₂(bpea- pyr)(dmso)], **2b**: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

(c)

(e)

Figure S 4. NMR spectra (600 MHz, 298 K, d₆-acetone) trans, fac-[Ru^{II}Cl(CN-Me)(bpea-pyr)]⁺, 3: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

Figure S 5. NMR spectra (600 MHz, 298 K, d₆-acetone) trans,fac-[Ru^{III}(CN-Me)(bpea-pyr)(H₂O)]²⁺, 4: (a) ¹H-NMR, (b) ¹³C-NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMBC.

(c)

(e)

Figure S 7. Cyclic voltammogram of complex 4 (1 mM) in CH₂Cl₂ + 0.1 M TBAH at a glassy carbon disk electrode (scan rate = 100 mV s⁻¹).

Figure S 8. (a) Growing of a C/poly-3 film in CH₂Cl₂ + 0.1 M TBAH at a glassy carbon disk electrode (diameter = 3 mm) by scanning the potential between 0 and 1.3 V throughout 30 cycles (scan rate = 100 mV s⁻¹). (b) Cyclic voltammograms registered after transferring the C/poly-3 modified electrode into a blank electrolyte solution (5 cycles were registered; final amount of anchored complex = $4.36 \cdot 10^{-10}$ mols cm⁻²).

